IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p485-d721803.html
   My bibliography  Save this article

Instrumental Methods for Cage Occupancy Estimation of Gas Hydrate

Author

Listed:
  • Wenjiu Cai

    (College of Engineering, Peking University, Beijing 100871, China
    Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China)

  • Xin Huang

    (SINOPEC Petroleum Exploration and Production Research Institute, Beijing 100083, China)

  • Hailong Lu

    (Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China)

Abstract

Studies revealed that gas hydrate cages, especially small cages, are incompletely filled with guest gas molecules, primarily associated with pressure and gas composition. The ratio of hydrate cages occupied by guest molecules, defined as cage occupancy, is a critical parameter to estimate the resource amount of a natural gas hydrate reservoir and evaluate the storage capacity of methane or hydrogen hydrate as an energy storage medium and carbon dioxide hydrate as a carbon sequestration matrix. As the result, methods have been developed to investigate the cage occupancy of gas hydrate. In this review, several instrument methods widely applied for gas hydrate analysis are introduced, including Raman, NMR, XRD, neutron diffraction, and the approaches to estimate cage occupancy are summarized.

Suggested Citation

  • Wenjiu Cai & Xin Huang & Hailong Lu, 2022. "Instrumental Methods for Cage Occupancy Estimation of Gas Hydrate," Energies, MDPI, vol. 15(2), pages 1-24, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:485-:d:721803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/485/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/485/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olga Gaidukova & Sergey Misyura & Vladimir Morozov & Pavel Strizhak, 2023. "Gas Hydrates: Applications and Advantages," Energies, MDPI, vol. 16(6), pages 1-19, March.
    2. Dmitrii Antonov & Olga Gaidukova & Galina Nyashina & Dmitrii Razumov & Pavel Strizhak, 2022. "Prospects of Using Gas Hydrates in Power Plants," Energies, MDPI, vol. 15(12), pages 1-20, June.
    3. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:485-:d:721803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.