IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p404-d718964.html
   My bibliography  Save this article

Exergy Analysis of Alternative Configurations of Biomass-Based Light Olefin Production System with a Combined-Cycle Scheme via Methanol Intermediate

Author

Listed:
  • Yuping Li

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Maolin Ye

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China)

  • Fenghua Tan

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Chenguang Wang

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Jinxing Long

    (School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China)

Abstract

Thermodynamic performance of three conceptual systems for biomass-derived olefin production with electricity cogeneration was studied and compared via exergy analysis at the levels of system, subsystem and operation unit. The base case was composed of the subsystems of gasification, raw fuel gas adjustment, methanol/light olefin synthesis and steam & power generation, etc. The power case and fuel case were designed as the combustion of a fraction of gasification gas to increase power generation and the recycle of a fraction of synthesis tail gas to increase olefin production, respectively. It was found that the subsystems of gasification and steam & power generation contribute ca. 80% of overall exergy destruction for each case, of which gasifier and combustor are the main exergy destruction sources, due to the corresponding chemical exergy degrading of biomass and fuel gas. The low efficiency of 33.1% for the power case could be attributed to the significant irreversibility of the combustor, economizer, and condenser in the combined-cycle subsystem. The effect of the tail gas recycle ratio, moisture content of feedstock, and biomass type was also investigated to enhance system exergy performance, which could be achieved by high recycle ratio, using dry biomass and the feedstock with high carbon content. High system efficiency of 38.9% was obtained when oil palm shell was used, which was 31.7% for rice husk due to its low carbon content.

Suggested Citation

  • Yuping Li & Maolin Ye & Fenghua Tan & Chenguang Wang & Jinxing Long, 2022. "Exergy Analysis of Alternative Configurations of Biomass-Based Light Olefin Production System with a Combined-Cycle Scheme via Methanol Intermediate," Energies, MDPI, vol. 15(2), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:404-:d:718964
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/404/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/404/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Peng & Parvez, Ashak Mahmud & Meng, Yang & Xu, Meng-xia & Shui, Tian-chi & Sun, Cheng-gong & Wu, Tao, 2019. "Exergetic, economic and carbon emission studies of bio-olefin production via indirect steam gasification process," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yuping & Tan, Fenghua & Peng, Jiangang & Feng, Mi & Liao, Yuhe & Luo, Weimin & Dong, Kaijun & Long, Jinxing, 2023. "Exergy analysis of alternative configurations of biomass gasification-mixed alcohol production system via catalytic synthesis and fermentation," Energy, Elsevier, vol. 280(C).
    2. Wang, Yuting & Chen, Heng & Qiao, Shichao & Pan, Peiyuan & Xu, Gang & Dong, Yuehong & Jiang, Xue, 2023. "A novel methanol-electricity cogeneration system based on the integration of water electrolysis and plasma waste gasification," Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiangxiang & Sun, Zhuang & Kuo, Po-Chih & Aziz, Muhammad, 2024. "Carbon-negative olefins production from biomass and solar energy via direct chemical looping," Energy, Elsevier, vol. 289(C).
    2. Clauser, Nicolás M. & Felissia, Fernando E. & Area, María C. & Vallejos, María E., 2021. "A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Li, Yuping & Tan, Fenghua & Peng, Jiangang & Feng, Mi & Liao, Yuhe & Luo, Weimin & Dong, Kaijun & Long, Jinxing, 2023. "Exergy analysis of alternative configurations of biomass gasification-mixed alcohol production system via catalytic synthesis and fermentation," Energy, Elsevier, vol. 280(C).
    4. Chen, Jianjun & Lam, Hon Loong & Qian, Yu & Yang, Siyu, 2021. "Combined energy consumption and CO2 capture management: Improved acid gas removal process integrated with CO2 liquefaction," Energy, Elsevier, vol. 215(PA).
    5. Gabriel Talero & Yasuki Kansha, 2022. "Simulation of the Steam Gasification of Japanese Waste Wood in an Indirectly Heated Downdraft Reactor Using PRO/II™: Numerical Comparison of Stoichiometric and Kinetic Models," Energies, MDPI, vol. 15(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:404-:d:718964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.