IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9530-d1004760.html
   My bibliography  Save this article

Experimental Study on the Optimal-Based Vibration Control of a Wind Turbine Tower Using a Small-Scale Electric Drive with MR Damper Support

Author

Listed:
  • Paweł Martynowicz

    (Department of Process Control, AGH University of Science and Technology, Mickiewicza 30 Ave., 30-059 Kraków, Poland)

Abstract

The paper presents an experimental implementation of an optimal-based vibration control for a scaled wind turbine tower-nacelle structure. A laboratory model of the approximate power scale of 340 W, equipped with a nonlinear tuned vibration absorber (TVA), is analysed. For control purposes, a combined operation of a small-scale electric servo drive and a magnetorheological (MR) damper is used in the TVA system. Nonlinearities of both the electric drive and the MR damper are intrinsic parts of the adopted nonlinear control concept. The aim of the research is the simple-hardware real-time implementation and the experimental investigation of the simultaneous actuator and damper control, including the analysis of the influence of optimal control law parameters and quality function weights on the vibration attenuation efficiency and actuator energy demand. As a reference, an optimal-based, modified ground-hook control with the single goal of the primary structure deflection minimisation is used along with the passive system with zero MR damper current and idling electric actuator, proving the advantages of the proposed method. The regarded solutions guarantee 57% maximum structure deflection reduction concerning the passive TVA configuration, using an MR damper of 32 N maximum force and an electric drive of 12.5 N nominal force and 0.76 W nominal power. An interesting alternative is the optimal control concept tuned with regard to the actuator power minimisation—it provides 30% maximum structure deflection attenuation (concerning the passive TVA configuration) while using a passive damper of 3.3 N maximum force and an actuator of 0.17 W nominal power only. It makes evident the advantage of the properly tuned optimal control algorithm over the modified ground-hook law—it requires 51% less actuator energy than the latter parametrised to exhibit the same vibration attenuation properties.

Suggested Citation

  • Paweł Martynowicz, 2022. "Experimental Study on the Optimal-Based Vibration Control of a Wind Turbine Tower Using a Small-Scale Electric Drive with MR Damper Support," Energies, MDPI, vol. 15(24), pages 1-25, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9530-:d:1004760
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9530/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9530/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paweł Martynowicz, 2021. "Nonlinear Optimal-Based Vibration Control of a Wind Turbine Tower Using Hybrid vs. Magnetorheological Tuned Vibration Absorber," Energies, MDPI, vol. 14(16), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matilde Santos, 2022. "Special Issue on Dynamics and Control of Offshore and Onshore Wind Turbine Structures," Energies, MDPI, vol. 15(8), pages 1-3, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9530-:d:1004760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.