IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9475-d1003065.html
   My bibliography  Save this article

Verification of Prediction Method Based on Machine Learning under Wake Effect Using Real-Time Digital Simulator

Author

Listed:
  • Rae-Jin Park

    (Korea Electric Power Corporation Research Institute, Naju-si 58322, Republic of Korea)

  • Jeong-Hwan Kim

    (Department of Electrical Engineering, Hanbat National University, Daejeon 34158, Republic of Korea)

  • Byungchan Yoo

    (Department of Electrical Engineering, Hanbat National University, Daejeon 34158, Republic of Korea)

  • Minhan Yoon

    (Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea)

  • Seungmin Jung

    (Department of Electrical Engineering, Hanbat National University, Daejeon 34158, Republic of Korea)

Abstract

With the increase in the penetration rate of renewable energy sources, a machine-learning-based forecasting system has been introduced to the grid sector to improve the participation rate in the electricity market and reduce energy losses. In these studies, correlation analysis of mechanical and environmental variables, including geographical figures, is considered a crucial point to increase the prediction’s accuracy. Various models have been applied in terms of accuracy, speed calculation, and amount of data based on a mathematical model that can calculate the wake; however, it can be difficult to derive variables such as air density, roughness length, and the effect of turbulence on the structural characteristics of wind turbines. Furthermore, wake accuracy could decrease due to the excessive variables that come from the wake effect parameters. In this paper, we intend to conduct research to improve prediction accuracy by considering the wake effect of wind turbines using supervisory control and data acquisition (SCADA) data from the Dongbok wind farm. The wake divides the wind direction into four parts and then recognizes and predicts the affected wind turbine. The predicted result is the wake wind speed and its conversion to power generation by applying a power curve. We try to show the efficiency of machine learning by comparing the wake wind speed and the power generation in the wake model. This result shows the error rate using evaluation metrics of regression, such as mean squared error (MSE), root mean squared error (RMSE), and weighted absolute percentage error (WAPE), and attempts to verify power system impact and efficiency through a real-time digital simulator (RTDS).

Suggested Citation

  • Rae-Jin Park & Jeong-Hwan Kim & Byungchan Yoo & Minhan Yoon & Seungmin Jung, 2022. "Verification of Prediction Method Based on Machine Learning under Wake Effect Using Real-Time Digital Simulator," Energies, MDPI, vol. 15(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9475-:d:1003065
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9475/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Branko Kosovic & Sue Ellen Haupt & Daniel Adriaansen & Stefano Alessandrini & Gerry Wiener & Luca Delle Monache & Yubao Liu & Seth Linden & Tara Jensen & William Cheng & Marcia Politovich & Paul Prest, 2020. "A Comprehensive Wind Power Forecasting System Integrating Artificial Intelligence and Numerical Weather Prediction," Energies, MDPI, vol. 13(6), pages 1-16, March.
    2. Archer, Cristina L. & Vasel-Be-Hagh, Ahmadreza & Yan, Chi & Wu, Sicheng & Pan, Yang & Brodie, Joseph F. & Maguire, A. Eoghan, 2018. "Review and evaluation of wake loss models for wind energy applications," Applied Energy, Elsevier, vol. 226(C), pages 1187-1207.
    3. Jeong-Hwan Kim & Iseul Nam & Sungwoo Kang & Seungmin Jung, 2022. "Development of an Optimized Curtailment Scheme through Real-Time Simulation," Energies, MDPI, vol. 15(3), pages 1-16, January.
    4. Parada, Leandro & Herrera, Carlos & Flores, Paulo & Parada, Victor, 2017. "Wind farm layout optimization using a Gaussian-based wake model," Renewable Energy, Elsevier, vol. 107(C), pages 531-541.
    5. Wang, Longyan & Cholette, Michael E. & Tan, Andy C.C. & Gu, Yuantong, 2017. "A computationally-efficient layout optimization method for real wind farms considering altitude variations," Energy, Elsevier, vol. 132(C), pages 147-159.
    6. Xiaoyu Shi & Xuewen Lei & Qiang Huang & Shengzhi Huang & Kun Ren & Yuanyuan Hu, 2018. "Hourly Day-Ahead Wind Power Prediction Using the Hybrid Model of Variational Model Decomposition and Long Short-Term Memory," Energies, MDPI, vol. 11(11), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    2. Zhang, Ziyu & Huang, Peng, 2023. "Prediction of multiple-wake velocity and wind power using a cosine-shaped wake model," Renewable Energy, Elsevier, vol. 219(P1).
    3. Wu, Yan & Zhang, Shuai & Wang, Ruiqi & Wang, Yufei & Feng, Xiao, 2020. "A design methodology for wind farm layout considering cable routing and economic benefit based on genetic algorithm and GeoSteiner," Renewable Energy, Elsevier, vol. 146(C), pages 687-698.
    4. Masoudi, Seiied Mohsen & Baneshi, Mehdi, 2022. "Layout optimization of a wind farm considering grids of various resolutions, wake effect, and realistic wind speed and wind direction data: A techno-economic assessment," Energy, Elsevier, vol. 244(PB).
    5. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Kyoungboo Yang & Kyungho Cho, 2019. "Simulated Annealing Algorithm for Wind Farm Layout Optimization: A Benchmark Study," Energies, MDPI, vol. 12(23), pages 1-15, November.
    7. Yang, Kyoungboo & Kwak, Gyeongil & Cho, Kyungho & Huh, Jongchul, 2019. "Wind farm layout optimization for wake effect uniformity," Energy, Elsevier, vol. 183(C), pages 983-995.
    8. Ling, Ziyan & Zhao, Zhenzhou & Liu, Yige & Liu, Huiwen & Ali, Kashif & Liu, Yan & Wen, Yifan & Wang, Dingding & Li, Shijun & Su, Chunhao, 2024. "Multi-objective layout optimization for wind farms based on non-uniformly distributed turbulence and a new three-dimensional multiple wake model," Renewable Energy, Elsevier, vol. 227(C).
    9. Paweł Piotrowski & Inajara Rutyna & Dariusz Baczyński & Marcin Kopyt, 2022. "Evaluation Metrics for Wind Power Forecasts: A Comprehensive Review and Statistical Analysis of Errors," Energies, MDPI, vol. 15(24), pages 1-38, December.
    10. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    11. Pollini, Nicolò, 2022. "Topology optimization of wind farm layouts," Renewable Energy, Elsevier, vol. 195(C), pages 1015-1027.
    12. Zhang, Shaohai & Duan, Huanfeng & Lu, Lin & He, Ruiyang & Gao, Xiaoxia & Zhu, Songye, 2024. "Quantification of three-dimensional added turbulence intensity for the horizontal-axis wind turbine considering the wake anisotropy," Energy, Elsevier, vol. 294(C).
    13. Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
    14. Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).
    15. Abdullah Al-Shereiqi & Amer Al-Hinai & Mohammed Albadi & Rashid Al-Abri, 2021. "Optimal Sizing of Hybrid Wind-Solar Power Systems to Suppress Output Fluctuation," Energies, MDPI, vol. 14(17), pages 1-16, August.
    16. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    17. Zehtabiyan-Rezaie, Navid & Abkar, Mahdi, 2024. "An extended k−ɛ model for wake-flow simulation of wind farms," Renewable Energy, Elsevier, vol. 222(C).
    18. Kyoungboo Yang, 2020. "Determining an Appropriate Parameter of Analytical Wake Models for Energy Capture and Layout Optimization on Wind Farms," Energies, MDPI, vol. 13(3), pages 1-17, February.
    19. Javier Serrano González & Manuel Burgos Payán & Jesús Manuel Riquelme Santos & Ángel Gaspar González Rodríguez, 2021. "Optimal Micro-Siting of Weathervaning Floating Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
    20. Garcia Marrero, Luis Enrique & Arzola Ruíz, José, 2021. "Web-based tool for the decision making in photovoltaic/wind farms planning with multiple objectives," Renewable Energy, Elsevier, vol. 179(C), pages 2224-2234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9475-:d:1003065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.