IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9341-d998955.html
   My bibliography  Save this article

A Review of Hybrid Converter Topologies

Author

Listed:
  • Hossein Afshari

    (Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 12616 Tallinn, Estonia)

  • Oleksandr Husev

    (Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 12616 Tallinn, Estonia)

  • Oleksandr Matiushkin

    (Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 12616 Tallinn, Estonia)

  • Dmitri Vinnikov

    (Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 12616 Tallinn, Estonia)

Abstract

There is a growing interest in solar energy systems with storage battery assistance. There is a corresponding growing interest in hybrid converters. This paper provides a comprehensive review of hybrid converter topologies. The concept of a hybrid inverter is introduced and then classified into isolated and non-isolated structures based on using a galvanic transformer. The classification and description of each type are presented based on the features and applications. Furthermore, the most popular commercial solutions are investigated in terms of their simplicity, flexibility, efficiency, and battery technology. The summarizing features are presented through tables, and future trends for researchers to follow to develop efficient hybrid converters are discussed. This review paper is intended as a convenient reference for hybrid converter users.

Suggested Citation

  • Hossein Afshari & Oleksandr Husev & Oleksandr Matiushkin & Dmitri Vinnikov, 2022. "A Review of Hybrid Converter Topologies," Energies, MDPI, vol. 15(24), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9341-:d:998955
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9341/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9341/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Affam, Azuka & Buswig, Yonis M. & Othman, Al-Khalid Bin Hj & Julai, Norhuzaimin Bin & Qays, Ohirul, 2021. "A review of multiple input DC-DC converter topologies linked with hybrid electric vehicles and renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Hirst, Eric & Kirby, Brendan, 1996. "Costs for electric-power ancillary services," The Electricity Journal, Elsevier, vol. 9(10), pages 26-30, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming, Zeng & Ximei, Liu & Lilin, Peng, 2014. "The ancillary services in China: An overview and key issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 83-90.
    2. Belqasem Aljafari & Gunapriya Devarajan & Sivaranjani Subramani & Subramaniyaswamy Vairavasundaram, 2023. "Intelligent RBF-Fuzzy Controller Based Non-Isolated DC-DC Multi-Port Converter for Renewable Energy Applications," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    3. Saad Khan Baloch & Abdul Sattar Larik & Mukhtiar Ahmed Mahar, 2023. "Analyzing the Effectiveness of Single Active Bridge DC-DC Converter under Transient and Load Variation," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    4. Kumar, T. Bharath & Singh, Anoop, 2021. "Ancillary services in the Indian power sector – A look at recent developments and prospects," Energy Policy, Elsevier, vol. 149(C).
    5. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2018. "An international experience of technical and economic aspects of ancillary services in deregulated power industry: Lessons for emerging BRIC electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 774-801.
    6. Joaquin Soldado-Guamán & Victor Herrera-Perez & Mayra Pacheco-Cunduri & Alejandro Paredes-Camacho & Miguel Delgado-Prieto & Jorge Hernandez-Ambato, 2023. "Multiple Input-Single Output DC-DC Converters Assessment for Low Power Renewable Sources Integration," Energies, MDPI, vol. 16(4), pages 1-28, February.
    7. Fahad Alsokhiry & Grain Philip Adam, 2020. "Multi-Port DC-DC and DC-AC Converters for Large-Scale Integration of Renewable Power Generation," Sustainability, MDPI, vol. 12(20), pages 1-21, October.
    8. Drouineau, Mathilde & Maïzi, Nadia & Mazauric, Vincent, 2014. "Impacts of intermittent sources on the quality of power supply: The key role of reliability indicators," Applied Energy, Elsevier, vol. 116(C), pages 333-343.
    9. Mahdi Shademan & Alireza Jalilian & Mehdi Savaghebi, 2021. "Improved Control Method for Voltage Regulation and Harmonic Mitigation Using Electric Spring," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    10. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2017. "Market based procurement of energy and ancillary services from Renewable Energy Sources in deregulated environment," Renewable Energy, Elsevier, vol. 101(C), pages 1390-1400.
    11. Raineri, R. & Rios, S. & Schiele, D., 2006. "Technical and economic aspects of ancillary services markets in the electric power industry: an international comparison," Energy Policy, Elsevier, vol. 34(13), pages 1540-1555, September.
    12. Peyman Koohi & Alan J. Watson & Jon C. Clare & Thiago Batista Soeiro & Patrick W. Wheeler, 2023. "A Survey on Multi-Active Bridge DC-DC Converters: Power Flow Decoupling Techniques, Applications, and Challenges," Energies, MDPI, vol. 16(16), pages 1-47, August.
    13. Reddi Khasim, Shaik & Dhanamjayulu, C., 2021. "Selection parameters and synthesis of multi-input converters for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Pollitt, Michael G., 2012. "Lessons from the history of independent system operators in the energy sector," Energy Policy, Elsevier, vol. 47(C), pages 32-48.
    15. Danalakshmi D. & Gopi R. & A. Hariharasudan & Iwona Otola & Yuriy Bilan, 2020. "Reactive Power Optimization and Price Management in Microgrid Enabled with Blockchain," Energies, MDPI, vol. 13(23), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9341-:d:998955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.