IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8902-d983554.html
   My bibliography  Save this article

Renewable Energy Communities as Modes of Collective Prosumership: A Multi-Disciplinary Assessment, Part I—Methodology

Author

Listed:
  • Shubhra Chaudhry

    (Institute of Engineering, Hanze University of Applied Sciences, 9747 AS Groningen, The Netherlands
    These authors contributed equally to this work.)

  • Arne Surmann

    (Department of Smart Grids, Fraunhofer Institute for Solar Energy Systems ISE, 79110 Freiburg, Germany
    These authors contributed equally to this work.)

  • Matthias Kühnbach

    (Department of Smart Grids, Fraunhofer Institute for Solar Energy Systems ISE, 79110 Freiburg, Germany)

  • Frank Pierie

    (Institute of Engineering, Hanze University of Applied Sciences, 9747 AS Groningen, The Netherlands)

Abstract

Citizens are set to play an active role in the energy transition by transforming from ‘passive’ consumers to ‘active’ prosumers. Renewable Energy Communities (RECs) are envisioned as modes of collective prosumership by citizens under the Renewable Energy Directive of 2018 (RED II). A holistic understanding of RECs is essential to identify the benefits and challenges of collective prosumership. RECs have been the topic of several modelling studies, but a single model that simulates RECs from an integrated perspective—combining technical, economic and ecological analysis—is absent. Wide variability in the indicators discourages comparison of the results across studies. This article builds on the existing knowledge by proposing an integrated model to undertake a multi-disciplinary assessment of a potential REC. First, the proposed model analyses the technical possibilities of collective prosumership using energy flow analysis based on consumption and generation profiles. Second, the model evaluates the economic impacts of prosumership from two perspectives: from the consumers’ perspective (in terms of the annual cost of energy consumption) and from an investor’s perspective (in terms of the net present value of the investment). Thirdly, the model quantifies the annual greenhouse gas emissions of energy consumption (expressed in CO 2 equivalent) to evaluate the ecological impact of prosumership. Lastly, a set of key performance indicators (KPIs) are proposed that can be used to interpret and compare the results of simulations and are mapped to the actors in the REC in line with their objectives. The proposed approach offers a single, replicable model that can be used to simulate RECs in the different Member States of the European Union. The KPIs can be used to compare the impact of combinations of various prosumership activities within the same REC or to compare two different RECs on the benefits offered vis-a-vis the investments incurred. The KPIs also offer insights into the aligning and conflicting objectives of the stakeholders of the REC.

Suggested Citation

  • Shubhra Chaudhry & Arne Surmann & Matthias Kühnbach & Frank Pierie, 2022. "Renewable Energy Communities as Modes of Collective Prosumership: A Multi-Disciplinary Assessment, Part I—Methodology," Energies, MDPI, vol. 15(23), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8902-:d:983554
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8902/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8902/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bartolini, Andrea & Carducci, Francesco & Muñoz, Carlos Boigues & Comodi, Gabriele, 2020. "Energy storage and multi energy systems in local energy communities with high renewable energy penetration," Renewable Energy, Elsevier, vol. 159(C), pages 595-609.
    2. Francesca Ceglia & Elisa Marrasso & Carlo Roselli & Maurizio Sasso, 2021. "Small Renewable Energy Community: The Role of Energy and Environmental Indicators for Power Grid," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    3. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    4. Eunice Espe & Vidyasagar Potdar & Elizabeth Chang, 2018. "Prosumer Communities and Relationships in Smart Grids: A Literature Review, Evolution and Future Directions," Energies, MDPI, vol. 11(10), pages 1-24, September.
    5. Lubov Petrichenko & Antans Sauhats & Illia Diahovchenko & Irina Segeda, 2022. "Economic Viability of Energy Communities versus Distributed Prosumers," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    6. Wouter Schram & Atse Louwen & Ioannis Lampropoulos & Wilfried van Sark, 2019. "Comparison of the Greenhouse Gas Emission Reduction Potential of Energy Communities," Energies, MDPI, vol. 12(23), pages 1-23, November.
    7. Tsvetanov, Tsvetan, 2022. "The deterring effect of monetary costs on smart meter adoption," Applied Energy, Elsevier, vol. 318(C).
    8. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    9. Daniele Menniti & Anna Pinnarelli & Nicola Sorrentino & Pasquale Vizza & Giuseppe Barone & Giovanni Brusco & Stefano Mendicino & Luca Mendicino & Gaetano Polizzi, 2022. "Enabling Technologies for Energy Communities: Some Experimental Use Cases," Energies, MDPI, vol. 15(17), pages 1-26, August.
    10. Moiz Masood Syed & Gregory M. Morrison & James Darbyshire, 2020. "Shared Solar and Battery Storage Configuration Effectiveness for Reducing the Grid Reliance of Apartment Complexes," Energies, MDPI, vol. 13(18), pages 1-23, September.
    11. Inês F. G. Reis & Ivo Gonçalves & Marta A. R. Lopes & Carlos Henggeler Antunes, 2021. "Assessing the Influence of Different Goals in Energy Communities’ Self-Sufficiency—An Optimized Multiagent Approach," Energies, MDPI, vol. 14(4), pages 1-32, February.
    12. Fleischhacker, Andreas & Lettner, Georg & Schwabeneder, Daniel & Auer, Hans, 2019. "Portfolio optimization of energy communities to meet reductions in costs and emissions," Energy, Elsevier, vol. 173(C), pages 1092-1105.
    13. Lowitzsch, J. & Hoicka, C.E. & van Tulder, F.J., 2020. "Renewable energy communities under the 2019 European Clean Energy Package – Governance model for the energy clusters of the future?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    14. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paola Marrone & Federico Fiume & Antonino Laudani & Ilaria Montella & Martina Palermo & Francesco Riganti Fulginei, 2023. "Distributed Energy Systems: Constraints and Opportunities in Urban Environments," Energies, MDPI, vol. 16(6), pages 1-27, March.
    2. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Energy Behaviors of Prosumers in Example of Polish Households," Energies, MDPI, vol. 16(7), pages 1-26, March.
    3. Mirosław Struś & Daria Kostecka-Jurczyk & Katarzyna Marak, 2023. "The Role of Local Government in the Bottom-Up Energy Transformation of Poland on the Example of the Lower Silesian Voivodeship," Energies, MDPI, vol. 16(12), pages 1-13, June.
    4. Itxaso Aranzabal & Julen Gomez-Cornejo & Iraide López & Ander Zubiria & Javier Mazón & Ane Feijoo-Arostegui & Haizea Gaztañaga, 2023. "Optimal Management of an Energy Community with PV and Battery-Energy-Storage Systems," Energies, MDPI, vol. 16(2), pages 1-23, January.
    5. Lowitzsch, Jens & Kreutzer, Kaja & George, Jan & Croonenbroeck, Carsten & Breitschopf, Barbara, 2023. "Development prospects for energy communities in the EU identifying best practice and future opportunities using a morphological approach," Energy Policy, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Ceglia & Elisa Marrasso & Giovanna Pallotta & Carlo Roselli & Maurizio Sasso, 2022. "The State of the Art of Smart Energy Communities: A Systematic Review of Strengths and Limits," Energies, MDPI, vol. 15(9), pages 1-28, May.
    2. Francesca Ceglia & Elisa Marrasso & Samiran Samanta & Maurizio Sasso, 2022. "Addressing Energy Poverty in the Energy Community: Assessment of Energy, Environmental, Economic, and Social Benefits for an Italian Residential Case Study," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    3. Volpato, Gabriele & Carraro, Gianluca & Cont, Marco & Danieli, Piero & Rech, Sergio & Lazzaretto, Andrea, 2022. "General guidelines for the optimal economic aggregation of prosumers in energy communities," Energy, Elsevier, vol. 258(C).
    4. Francesca Ceglia & Elisa Marrasso & Carlo Roselli & Maurizio Sasso, 2021. "Small Renewable Energy Community: The Role of Energy and Environmental Indicators for Power Grid," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    5. Alessandra Chiarini & Lorenzo Compagnucci, 2022. "Blockchain, Data Protection and P2P Energy Trading: A Review on Legal and Economic Challenges," Sustainability, MDPI, vol. 14(23), pages 1-20, December.
    6. Federico De Santi & Matteo Moncecchi & Giuseppe Prettico & Gianluca Fulli & Sergio Olivero & Marco Merlo, 2022. "To Join or Not to Join? The Energy Community Dilemma: An Italian Case Study," Energies, MDPI, vol. 15(19), pages 1-20, September.
    7. Ceglia, Francesca & Marrasso, Elisa & Roselli, Carlo & Sasso, Maurizio, 2023. "Energy and environmental assessment of a biomass-based renewable energy community including photovoltaic and hydroelectric systems," Energy, Elsevier, vol. 282(C).
    8. Roberto De Lotto & Calogero Micciché & Elisabetta M. Venco & Angelo Bonaiti & Riccardo De Napoli, 2022. "Energy Communities: Technical, Legislative, Organizational, and Planning Features," Energies, MDPI, vol. 15(5), pages 1-22, February.
    9. Park, Sung-Won & Zhang, Zhong & Li, Furong & Son, Sung-Yong, 2021. "Peer-to-peer trading-based efficient flexibility securing mechanism to support distribution system stability," Applied Energy, Elsevier, vol. 285(C).
    10. Juan Pablo Fernández Goycoolea & Gabriela Zapata-Lancaster & Christopher Whitman, 2022. "Operational Emissions in Prosuming Dwellings: A Study Comparing Different Sources of Grid CO 2 Intensity Values in South Wales, UK," Energies, MDPI, vol. 15(7), pages 1-24, March.
    11. Myriam Caratù & Valerio Brescia & Ilaria Pigliautile & Paolo Biancone, 2023. "Assessing Energy Communities’ Awareness on Social Media with a Content and Sentiment Analysis," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    12. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).
    13. Ewelina Olba-Zięty & Jakub Jan Zięty & Mariusz Jerzy Stolarski, 2023. "External Environmental Costs of Solid Biomass Production against the Legal and Political Background in Europe," Energies, MDPI, vol. 16(10), pages 1-27, May.
    14. Hackbarth, André, 2018. "Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading," Reutlingen Working Papers on Marketing & Management 2019-2, Reutlingen University, ESB Business School.
    15. Haji Bashi, Mazaher & De Tommasi, Luciano & Le Cam, Andreea & Relaño, Lorena Sánchez & Lyons, Padraig & Mundó, Joana & Pandelieva-Dimova, Ivanka & Schapp, Henrik & Loth-Babut, Karolina & Egger, Christ, 2023. "A review and mapping exercise of energy community regulatory challenges in European member states based on a survey of collective energy actors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    16. Dalia Streimikiene & Tomas Baležentis & Artiom Volkov & Mangirdas Morkūnas & Agnė Žičkienė & Justas Streimikis, 2021. "Barriers and Drivers of Renewable Energy Penetration in Rural Areas," Energies, MDPI, vol. 14(20), pages 1-28, October.
    17. Pinto, Edwin S. & Gronier, Timothé & Franquet, Erwin & Serra, Luis M., 2023. "Opportunities and economic assessment for a third-party delivering electricity, heat and cold to residential buildings," Energy, Elsevier, vol. 272(C).
    18. Raimondi, Giulio & Spazzafumo, Giuseppe, 2023. "Exploring Renewable Energy Communities integration through a hydrogen Power-to-Power system in Italy," Renewable Energy, Elsevier, vol. 206(C), pages 710-721.
    19. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    20. Saveria Olga Murielle Boulanger & Martina Massari & Danila Longo & Beatrice Turillazzi & Carlo Alberto Nucci, 2021. "Designing Collaborative Energy Communities: A European Overview," Energies, MDPI, vol. 14(24), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8902-:d:983554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.