IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8507-d972375.html
   My bibliography  Save this article

Optimal Power Flow Technique for Distribution System Considering Distributed Energy Resources (DER)

Author

Listed:
  • Adolfo Blengini Neto

    (School of Electrical and Computer Engineering (FEEC), University of Campinas, Campinas 13083-970, SP, Brazil)

  • Maria Beatriz Barbosa

    (Centre for Exact Sciences, Technology and the Environment (CEATEC), Pontifical Catholic University of Campinas, Campinas 13087-571, SP, Brazil)

  • Lia Moreira Mota

    (Centre for Exact Sciences, Technology and the Environment (CEATEC), Pontifical Catholic University of Campinas, Campinas 13087-571, SP, Brazil)

  • Marina Lavorato

    (Centre for Exact Sciences, Technology and the Environment (CEATEC), Pontifical Catholic University of Campinas, Campinas 13087-571, SP, Brazil)

  • Marcius F. H. de Carvalho

    (Centre for Exact Sciences, Technology and the Environment (CEATEC), Pontifical Catholic University of Campinas, Campinas 13087-571, SP, Brazil)

Abstract

Modern electric power systems consist of large-scale, highly complex interconnected systems projected to match the intense demand growth for electrical energy. This involves the decision of generation, transmission, and distribution of resources at different time horizons. They also face challenges in incorporating new forms of generation, distributed generations, which are located close to consumer centers, and new loads such as electric vehicles. Traditionally, the nonlinear Newton–Raphson optimization method is used to support operational decisions in such systems, known as Optimal Power Flow (OPF). Although OPF is one of the most practically important and well-researched sub-fields of constrained nonlinear optimization and has a rich history of research, it faces the convergence difficulties associated with all problems represented using non-linear power flow constraints. The proposal is to present an approach in a software component in cloud Application Programming Interface (API) format, with alternative modeling of the electrical optimization problem as a non-linear objective function and representing electric network constraints modeled through both current and voltage Kirchhoff linear equations. This representation overcomes the non-linearity of the OPF problem considering Distributed Energy Resources (DER). The robustness, scalability, and availability of the method are tested on the IEEE-34 bus system with several modifications to accommodate the DER testing under conditions and in radial or meshed distribution systems under different load scenarios.

Suggested Citation

  • Adolfo Blengini Neto & Maria Beatriz Barbosa & Lia Moreira Mota & Marina Lavorato & Marcius F. H. de Carvalho, 2022. "Optimal Power Flow Technique for Distribution System Considering Distributed Energy Resources (DER)," Energies, MDPI, vol. 15(22), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8507-:d:972375
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8507/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8507/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mulusew Ayalew & Baseem Khan & Issaias Giday & Om Prakash Mahela & Mahdi Khosravy & Neeraj Gupta & Tomonobu Senjyu, 2022. "Integration of Renewable Based Distributed Generation for Distribution Network Expansion Planning," Energies, MDPI, vol. 15(4), pages 1-17, February.
    2. Georgios Fragkos & Jay Johnson & Eirini Eleni Tsiropoulou, 2022. "Centralized and Decentralized Distributed Energy Resource Access Control Implementation Considerations," Energies, MDPI, vol. 15(17), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed M. Nassef & Mohammad Ali Abdelkareem & Hussein M. Maghrabie & Ahmad Baroutaji, 2023. "Review of Metaheuristic Optimization Algorithms for Power Systems Problems," Sustainability, MDPI, vol. 15(12), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soheil Younesi & Bahman Ahmadi & Oguzhan Ceylan & Aydogan Ozdemir, 2022. "Optimum Parallel Processing Schemes to Improve the Computation Speed for Renewable Energy Allocation and Sizing Problems," Energies, MDPI, vol. 15(24), pages 1-18, December.
    2. Tomonobu Senjyu & Mahdi Khosravy, 2022. "Power System Planning and Quality Control," Energies, MDPI, vol. 15(14), pages 1-2, July.
    3. Fathy, Ahmed, 2022. "A novel artificial hummingbird algorithm for integrating renewable based biomass distributed generators in radial distribution systems," Applied Energy, Elsevier, vol. 323(C).
    4. Joseph P. Varghese & Kumaravel Sundaramoorthy & Ashok Sankaran, 2023. "Development and Validation of a Load Flow Based Scheme for Optimum Placing and Quantifying of Distributed Generation for Alleviation of Congestion in Interconnected Power Systems," Energies, MDPI, vol. 16(6), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8507-:d:972375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.