IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8398-d968702.html
   My bibliography  Save this article

A New Transformer-Less Single-Phase Photovoltaic Inverter to Improve the Performance of Grid-Connected Solar Photovoltaic Systems

Author

Listed:
  • Mohua Biswas

    (Department of Electronics & Telecommunication Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh)

  • Shuvra Prokash Biswas

    (Department of Electronics & Telecommunication Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh)

  • Md. Rabiul Islam

    (School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW 2522, Australia)

  • Md. Ashib Rahman

    (School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW 2522, Australia)

  • Kashem M. Muttaqi

    (School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW 2522, Australia)

  • S. M. Muyeen

    (Department of Electrical Engineering, Qatar University, Doha 2713, Qatar)

Abstract

Photovoltaic (PV) energy systems have found diverse applications in fulfilling the increasing energy demand worldwide. Transformer-less PV inverters convert the DC energy from PV systems to AC energy and deliver it to the grid through a non-isolated connection. This paper proposes a new transformer-less grid-connected PV inverter. A closed-loop control scheme is presented for the proposed transformer-less inverter to connect it with the power grid. The proposed transformer-less inverter reduces extra leakage current and holds the common-mode voltage at a constant point. To eliminate extra leakage current, as well as achieve constant common-mode voltage, a midpoint clamping method is utilized to operate the inverter. The proposed transformer-less inverter is formed of seven insulated gate bipolar transistors (IGBTs) employing a unipolar sinusoidal pulse width modulation (SPWM) technique for switching purposes. An LCL filter is employed to reshape the two-level inverter output voltage and current to obtain closer sinusoidal waveforms. The output voltage and current total harmonic distortion (THD) of the proposed transformer-less inverter were found to be 1.25% and 0.94%, respectively, in the grid-connected mode. The leakage current elimination mechanism with the proposed transformer-less inverter is deeply analyzed in this paper. The performances of the proposed transformer-less inverter were evaluated with MATLAB/Simulink simulation and validated in a laboratory scale experiment.

Suggested Citation

  • Mohua Biswas & Shuvra Prokash Biswas & Md. Rabiul Islam & Md. Ashib Rahman & Kashem M. Muttaqi & S. M. Muyeen, 2022. "A New Transformer-Less Single-Phase Photovoltaic Inverter to Improve the Performance of Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 15(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8398-:d:968702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8398/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8398/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Safa Haq & Shuvra Prokash Biswas & Md. Kamal Hosain & Md. Ashib Rahman & Md. Rabiul Islam & Sumaya Jahan, 2021. "A Modular Multilevel Converter with an Advanced PWM Control Technique for Grid-Tied Photovoltaic System," Energies, MDPI, vol. 14(2), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiran Bathala & Dharavath Kishan & Nagendrappa Harischandrappa, 2022. "Soft Switched Current Fed Dual Active Bridge Isolated Bidirectional Series Resonant DC-DC Converter for Energy Storage Applications," Energies, MDPI, vol. 16(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Abedaljabar Al-Samawi & Hafedh Trabelsi, 2022. "New Nine-Level Cascade Multilevel Inverter with a Minimum Number of Switches for PV Systems," Energies, MDPI, vol. 15(16), pages 1-25, August.
    2. Oleg Rekutov & Michail Surkov & Danil Lyapunov & Alexey Muravlev & Alexandra Pravikova & Anton Yudintsev & Victor Rulevskiy & Oleg Bubnov & Victor Pchelnikov, 2022. "Simulators for Designing Energy-Efficient Power Supplies Based on Solar Panels," Energies, MDPI, vol. 15(7), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8398-:d:968702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.