IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8167-d960706.html
   My bibliography  Save this article

A Novel Denoising Method for Partial Discharge Signal Based on Improved Variational Mode Decomposition

Author

Listed:
  • Jingjie Yang

    (School of Automation and Electrical Engineering, Dalian Jiaotong University, Dalian 116028, China)

  • Ke Yan

    (Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China)

  • Zhuo Wang

    (School of Automation and Electrical Engineering, Dalian Jiaotong University, Dalian 116028, China)

  • Xiang Zheng

    (School of Automation and Electrical Engineering, Dalian Jiaotong University, Dalian 116028, China)

Abstract

Partial discharge (PD) online monitoring is a common technique for high-voltage equipment diagnosis. However, due to field interference, the monitored PD signal contains a lot of noise. Therefore, this paper proposes a novel method by integrating the flower pollination algorithm, variational mode decomposition, and Savitzky–Golay filter (FPA-VMD-SG) to effectively suppress white noise and narrowband noise in the PD signal. Firstly, based on the mean envelope entropy (MEE), the decomposition number and quadratic penalty term of the VMD were optimized by the FPA. The PD signal containing noise was broken down into intrinsic mode functions (IMFs) by optimized parameters. Secondly, the IMFs were classified as the signal component, the noise dominant component, and the noise component according to the kurtosis value. Thirdly, the noise dominant component was denoised using the SG filter, and the denoised signal was mixed with the signal component to reconstruct a new signal. Finally, threshold denoising was used to eliminate residual white noise. To verify the performance of the FPA-VMD-SG method, compared with empirical mode decomposition with wavelet transform (EMD-WT) and adaptive singular value decomposition (ASVD), the denoising results of simulated and real PD signals indicated that the FPA-VMD-SG method had excellent performance.

Suggested Citation

  • Jingjie Yang & Ke Yan & Zhuo Wang & Xiang Zheng, 2022. "A Novel Denoising Method for Partial Discharge Signal Based on Improved Variational Mode Decomposition," Energies, MDPI, vol. 15(21), pages 1-12, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8167-:d:960706
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8167/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8167/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vu Cong Thuc & Han Soo Lee, 2022. "Partial Discharge (PD) Signal Detection and Isolation on High Voltage Equipment Using Improved Complete EEMD Method," Energies, MDPI, vol. 15(16), pages 1-17, August.
    2. Kai Zhou & Mingzhi Li & Yuan Li & Min Xie & Yonglu Huang, 2019. "An Improved Denoising Method for Partial Discharge Signals Contaminated by White Noise Based on Adaptive Short-Time Singular Value Decomposition," Energies, MDPI, vol. 12(18), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songyuan Li & Pengxian Song & Zhanpeng Wei & Xu Li & Qinghua Tang & Zhengzheng Meng & Ji Li & Songtao Liu & Yuhuai Wang & Jin Li, 2022. "Partial Discharge Detection and Defect Location Method in GIS Cable Terminal," Energies, MDPI, vol. 16(1), pages 1-10, December.
    2. Mingsan Ouyang & Peicheng Shen, 2022. "Prediction of Remaining Useful Life of Lithium Batteries Based on WOA-VMD and LSTM," Energies, MDPI, vol. 15(23), pages 1-20, November.
    3. Hairui Wang & Xin Ye & Yuanbo Li & Guifu Zhu, 2023. "Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Improved Mode Decomposition and Time Series," Sustainability, MDPI, vol. 15(12), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linao Li & Xinlao Wei, 2022. "Power Interference Suppression Method for Measuring Partial Discharges under Pulse Square Voltage Conditions," Energies, MDPI, vol. 15(9), pages 1-15, May.
    2. Xing Zhang & Chongchong Zhang & Zhuoqun Wei, 2019. "Carbon Price Forecasting Based on Multi-Resolution Singular Value Decomposition and Extreme Learning Machine Optimized by the Moth–Flame Optimization Algorithm Considering Energy and Economic Factors," Energies, MDPI, vol. 12(22), pages 1-23, November.
    3. Xianjie Rao & Kai Zhou & Yuan Li & Guangya Zhu & Pengfei Meng, 2020. "A New Cross-Correlation Algorithm Based on Distance for Improving Localization Accuracy of Partial Discharge in Cables Lines," Energies, MDPI, vol. 13(17), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8167-:d:960706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.