IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7786-d948916.html
   My bibliography  Save this article

Large Stress-Gradient Creep Tests and Model Establishment for Red Sandstone Treated at High Temperatures

Author

Listed:
  • Xiaopeng Ren

    (Institute of Mining, Liaoning Technical University, Fuxin 123000, China
    College of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou 014010, China
    Beijing Tiandi Huatai Mining Management Co., Ltd., Beijing 100003, China)

  • Yajun Xin

    (School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
    Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo 454000, China)

  • Baoshan Jia

    (Institute of Mining, Liaoning Technical University, Fuxin 123000, China)

  • Kun Gao

    (Institute of Mining, Liaoning Technical University, Fuxin 123000, China)

  • Xuping Li

    (College of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou 014010, China)

  • Yu Wang

    (School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

Abstract

Red sandstone samples treated at high temperatures feature complex creep properties. Uniaxial compression tests and the incremental creep tests at different stress gradients were conducted on 10 red sandstone samples of the same specifications divided into five groups on an RLW-2000 triaxial servo rheometer in the laboratory. Relationships of the instantaneous strain and creep strain of red sandstone samples treated at high temperatures with the stress level were explored, and the creep properties and strength of the samples at different temperature gradients were investigated. In addition, the creep failure patterns and failure mechanism of the red sandstone samples were determined, and a creep constitutive model was established for the samples considering the effects of temperature. The conformity between test data and theoretical curves was discussed. Results show that as the stress increases, the instantaneous strain tends to decrease rapidly, slowly, then increase slowly; the creep strain tends to decrease, steadily increase, then increase substantially. At the same stress, as the stress gradient is doubled, the instantaneous strain decreases by 47.45%, and the creep strain decreases by 48.30%. For samples treated at 300~900 °C, the number of stress levels experienced gradually decreases; as the temperature increases, the creep failure strength of samples first increases, then decreases in an arcuate form, and the creep strain tends to decrease, increase, then increase rapidly. In the temperature range, the creep strain at the two stress gradients has a growing difference, with the maximum difference reaching 0.0134%; there is an inflection point at 300 °C in the creep failure strength of samples. At the same stress, the more the stress levels experienced, the lower the creep failure strength, and the temperature, creep failure strength, and creep strain can be characterized by a quadratic polynomial. At 300 °C, mineral particles in samples are sintered and cemented into chains, and there is a significant primary control plane, so the samples show oblique shear failure of a single primary control plane. At 600~900 °C, particles and blocks in samples begin to be sintered and flow, and the cemented chains are broken. Under the condition, the samples mainly show failure dominated by mixed and crossed primary and secondary control planes and crushing failure due to transverse compression. The established Burgers–Kelvin-Temperature (BKT) creep constitutive model is sensitive to changes in temperature; the theoretical curves are consistent with the test data.

Suggested Citation

  • Xiaopeng Ren & Yajun Xin & Baoshan Jia & Kun Gao & Xuping Li & Yu Wang, 2022. "Large Stress-Gradient Creep Tests and Model Establishment for Red Sandstone Treated at High Temperatures," Energies, MDPI, vol. 15(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7786-:d:948916
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheng-Qi Yang & Bo Hu & Pathegama G. Ranjith & Peng Xu, 2018. "Multi-Step Loading Creep Behavior of Red Sandstone after Thermal Treatments and a Creep Damage Model," Energies, MDPI, vol. 11(1), pages 1-26, January.
    2. Sheng-Qi Yang & Jin-Zhou Tang & Derek Elsworth, 2021. "Creep Rupture and Permeability Evolution in High Temperature Heat-Treated Sandstone Containing Pre-Existing Twin Flaws," Energies, MDPI, vol. 14(19), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tingting Cai & Lei Shi & Yulong Jiang & Zengchao Feng, 2022. "A Core Damage Constitutive Model for the Time-Dependent Creep and Relaxation Behavior of Coal," Energies, MDPI, vol. 15(11), pages 1-16, June.
    2. Yang, Fujian & Wang, Guiling & Hu, Dawei & Liu, Yanguang & Zhou, Hui & Tan, Xianfeng, 2021. "Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite," Renewable Energy, Elsevier, vol. 168(C), pages 544-558.
    3. Yi Xue & Faning Dang & Zhengzheng Cao & Feng Du & Fei Liu & Jie Ren & Feng Gao, 2018. "Numerical Analysis of Heat and Gas Transfer Characteristics during Heat Injection Processes Based on a Thermo-Hydro-Mechanical Model," Energies, MDPI, vol. 11(7), pages 1-20, July.
    4. Chun Zhu & Shengqi Yang & Yuanyuan Pu & Lijun Sun & Min Wang & Kun Du, 2023. "Advanced Progress of the Geo-Energy Technology in China," Energies, MDPI, vol. 16(19), pages 1-6, September.
    5. Jinzhou Tang & Shengqi Yang & Ke Yang & Wenling Tian & Guangjian Liu & Minke Duan, 2023. "Discrete Element Modeling of Thermally Damaged Sandstone Containing Two Pre-Existing Flaws at High Confining Pressure," Sustainability, MDPI, vol. 15(7), pages 1-17, April.
    6. Li, Wei & Li, Huaizhan & Chen, Yanpeng & Guo, Guangli & Chen, Fu & Tang, Chao & Zha, Jianfeng & Yuan, Yafei & Huo, Wenqi, 2024. "Risk analysis and production safety design of supercritical carbon dioxide storage in gasification combustion cavity," Energy, Elsevier, vol. 293(C).
    7. Tong, Huidong & Chen, Youliang & Chen, Qijian & Du, Xi & Xiao, Peng & Wang, Suran & Dong, Yang & Pan, Yungui & Ma, Hao & Long, Zhiyu, 2023. "A true triaxial creep constitutive model of rock considering the coupled thermo-mechanical damage," Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7786-:d:948916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.