IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7768-d948549.html
   My bibliography  Save this article

Design of a Gate-Driving Cell for Enabling Extended SiC MOSFET Voltage Blocking

Author

Listed:
  • Walid Issa

    (Electrical Engineering Department, Sheffield Hallam University, Sheffield S1 1WB, UK)

  • Jose Ortiz Gonzalez

    (School of Engineering, University of Warwick, Coventry CV4 7AL, UK)

  • Olayiwola Alatise

    (School of Engineering, University of Warwick, Coventry CV4 7AL, UK)

Abstract

A series connection of SiC MOSFETs for kV blocking capability can enable more design flexibility in modular multi-level converters as well as other topologies. In this paper, a novel gate driver circuit capable of driving series-connected SiC MOSFETs for high voltage applications is proposed. The primary advantage of the proposed design is that a single gate driver was used to switch all the series devices. The circuit used switching capacitors to sequentially charge and discharge device gate capacitances during switching and enable a negative turn-off voltage to avoid device coupling from Miller-capacitive feedback effects. With the proposed gate driver design and appropriate component values selection, avalanche breakdown due to voltage divergence during switching transients could be avoided with only a minor imbalance in the top device. Simulations and experimental measurements showed that the zero-current turn-off transition of all switches was achieved, and this approved the validity of the design.

Suggested Citation

  • Walid Issa & Jose Ortiz Gonzalez & Olayiwola Alatise, 2022. "Design of a Gate-Driving Cell for Enabling Extended SiC MOSFET Voltage Blocking," Energies, MDPI, vol. 15(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7768-:d:948549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7768/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7768/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olayiwola Alatise & Arkadeep Deb & Erfan Bashar & Jose Ortiz Gonzalez & Saeed Jahdi & Walid Issa, 2023. "A Review of Power Electronic Devices for Heavy Goods Vehicles Electrification: Performance and Reliability," Energies, MDPI, vol. 16(11), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7768-:d:948549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.