IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7709-d946622.html
   My bibliography  Save this article

Investigation on the Propagation Mechanisms of a Hydraulic Fracture in Glutenite Reservoirs Using DEM

Author

Listed:
  • Jing Tang

    (CNOOC Research Institute Ltd., Beijing 100028, China)

  • Bingjie Liu

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100190, China)

  • Guodong Zhang

    (College of Electromechanical Engineering, Qingdao University, Qingdao 266061, China)

Abstract

The geometry heterogeneity induced by embedded gravel can cause severe stress heterogeneity and strength heterogeneity in glutenite reservoirs, and subsequently affect the initiation and propagation of hydraulic fractures. Since the discrete element method (DEM) can accurately describe the inter-particle interactions, the macromechanical behavior of glutenite specimen can be preciously represented by DEM. Therefore, the initiation and propagation mechanisms of hydraulic fractures were investigated using a coupling seepage-DEM approach, the terminal fracture morphologies of hydraulic fractures were determined, and the effects of stress differences, permeability, and gravel strength were studied. The results show that the initiation and propagation of hydraulic fractures are significantly influenced by embedded gravel. In addition, the stress heterogeneity and strength heterogeneity induced by the gravel embedded near the wellbore increase local initiation points, causing a complicated fracture network nearby. Moreover, due to the effect of local stress heterogeneity, gravel strength, and energy concentration near the fracture tip, four interactions of attraction, deflection, penetration, and termination between propagating fractures and encountering gravel were observed.

Suggested Citation

  • Jing Tang & Bingjie Liu & Guodong Zhang, 2022. "Investigation on the Propagation Mechanisms of a Hydraulic Fracture in Glutenite Reservoirs Using DEM," Energies, MDPI, vol. 15(20), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7709-:d:946622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7709/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7709/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daoyi Zhu, 2023. "New Advances in Oil, Gas, and Geothermal Reservoirs," Energies, MDPI, vol. 16(1), pages 1-4, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7709-:d:946622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.