IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i1p327-d717171.html
   My bibliography  Save this article

A Mobile Robot-Based System for Automatic Inspection of Belt Conveyors in Mining Industry

Author

Listed:
  • Jarosław Szrek

    (Department of Fundamentals of Machine Design and Mechatronic Systems, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Janusz Jakubiak

    (Department of Cybernetics and Robotics, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Radoslaw Zimroz

    (Department of Mining, Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland)

Abstract

Mechanical systems (as belt conveyors) used in the mining industry, especially in deep underground mines, must be supervised on a regular basis. Unfortunately, they require high power and are spatially distributed over a large area. Till now, some elements of the conveyor (drive units) have been monitored 24 h/day using SCADA systems. The rest of the conveyor is inspected by maintenance staff. To minimize the presence of humans in harsh environments, we propose a mobile inspection platform based on autonomous UGV. It is equipped with various sensors, and in practice it is capable of collecting almost the same information as maintenance inspectors (RGB image, sound, gas sensor, etc.). Till now such experiments have been performed in the lab or in the mine, but the robot was controlled by the operator. In such a scenario the robot is able to record data, process them and detect, for example, an overheated idler. In this paper we will introduce the general concept of an automatic robot-based inspection for underground mining applications. A framework of how to deploy the inspection robot for automatic inspection (3D model of the tunnel, path planing, etc.) are defined and some first results from automatic inspection tested in lab conditions are presented. Differences between the planned and actual path are evaluated. We also point out some challenges for further research.

Suggested Citation

  • Jarosław Szrek & Janusz Jakubiak & Radoslaw Zimroz, 2022. "A Mobile Robot-Based System for Automatic Inspection of Belt Conveyors in Mining Industry," Energies, MDPI, vol. 15(1), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:327-:d:717171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/327/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/327/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karol Semrád & Katarína Draganová, 2022. "Non-Destructive Testing of Pipe Conveyor Belts Using Glass-Coated Magnetic Microwires," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    2. Olga Zhironkina & Sergey Zhironkin, 2023. "Technological and Intellectual Transition to Mining 4.0: A Review," Energies, MDPI, vol. 16(3), pages 1-37, February.
    3. Paweł Bogacz & Łukasz Cieślik & Dawid Osowski & Paweł Kochaj, 2022. "Analysis of the Scope for Reducing the Level of Energy Consumption of Crew Transport in an Underground Mining Plant Using a Conveyor Belt System Mining Plant," Energies, MDPI, vol. 15(20), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:327-:d:717171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.