IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i1p307-d716608.html
   My bibliography  Save this article

A Comprehensive Study on Intermittent Operation of Horizontal Deep Borehole Heat Exchangers

Author

Listed:
  • Ingen Perser

    (Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada)

  • Ian Alistair Frigaard

    (Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
    Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada)

Abstract

Utilizing a deep Borehole Heat Exchanger (BHE) has been recognized as a clean, renewable, low-carbon-emission, and sustainable way for heating of residential buildings and greenhouses. In this study, the long-term performance of horizontal deep BHE in intermittent mode is scrutinized. In this regard, to predict the transient heat transfer process in the deep BHEs, a mathematical model is developed and then verified by using the experimental results. The effect various key parameters including flow rate of circulating fluid, undisturbed ground temperature, inlet fluid temperature, and ground thermal conductivity on the thermal performance of deep BHE in continuous and intermittent mode is studied. According to the results, increasing the flow rate of circulating fluid, undisturbed ground temperature, and ground thermal conductivity is favorable for heat extraction rate. Moreover, the effect of three specific parameters for intermittent operation including periodic time interval, flow rate ratio, and recovery period ratio on the long-term performance of horizontal deep BHE are scrutinized. Based on the results, by decreasing the periodic time interval and increasing the flow rate ratio, the mean heat extraction rate in the period of 30 years is increased and the mean borehole’s wall temperature is decreased. Furthermore, by increasing the recovery period ratio, the heat extraction rate increases significantly while the total extracted energy decreases.

Suggested Citation

  • Ingen Perser & Ian Alistair Frigaard, 2022. "A Comprehensive Study on Intermittent Operation of Horizontal Deep Borehole Heat Exchangers," Energies, MDPI, vol. 15(1), pages 1-27, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:307-:d:716608
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Habibi, Mohammad & Aligolzadeh, Farid & Hakkaki-Fard, Ali, 2020. "A techno-economic analysis of geothermal ejector cooling system," Energy, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brown, Christopher S. & Kolo, Isa & Falcone, Gioia & Banks, David, 2023. "Investigating scalability of deep borehole heat exchangers: Numerical modelling of arrays with varied modes of operation," Renewable Energy, Elsevier, vol. 202(C), pages 442-452.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kavian, Soheil & Hakkaki-Fard, Ali & Jafari Mosleh, Hassan, 2020. "Energy performance and economic feasibility of hot spring-based district heating system – A case study," Energy, Elsevier, vol. 211(C).
    2. Ding, Hongbing & Dong, Yuanyuan & Yang, Yan & Wen, Chuang, 2024. "Performance and energy utilization analysis of transcritical CO2 two-phase ejector considering non-equilibrium phase changes," Applied Energy, Elsevier, vol. 372(C).
    3. Kavian, Soheil & Aghanajafi, Cyrus & Jafari Mosleh, Hassan & Nazari, Arash & Nazari, Ashkan, 2020. "Exergy, economic and environmental evaluation of an optimized hybrid photovoltaic-geothermal heat pump system," Applied Energy, Elsevier, vol. 276(C).
    4. Jia, Jie & Lee, W.L. & Cheng, Yuanda & Tian, Qi, 2021. "Can reversible room air-conditioner be used for combined space and domestic hot water heating in subtropical dwellings? Techno-economic evidence from Hong Kong," Energy, Elsevier, vol. 223(C).
    5. Hasan, Alabas & Mugdadi, Basheer & Al-Nimr, Moh'd A. & Tashtoush, Bourhan, 2022. "Direct and indirect utilization of thermal energy for cooling generation: A comparative analysis," Energy, Elsevier, vol. 238(PC).
    6. Abdelazim Abbas Ahmed & Mohsen Assadi & Adib Kalantar & Tomasz Sliwa & Aneta Sapińska-Śliwa, 2022. "A Critical Review on the Use of Shallow Geothermal Energy Systems for Heating and Cooling Purposes," Energies, MDPI, vol. 15(12), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:307-:d:716608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.