IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i1p294-d716246.html
   My bibliography  Save this article

Impact of Hydraulic System Stiffness on Its Energy Losses and Its Efficiency in Positioning Mechanical Systems

Author

Listed:
  • Piotr Dudziński

    (Department of Off-Road Machine and Vehicle Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland)

  • Aleksander Skurjat

    (Department of Off-Road Machine and Vehicle Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland)

Abstract

Hydraulic steering systems for mechanical devices, for example, manipulators or vehicle steering systems, should be able to achieve high positioning precision with high energy efficiency. However, this condition is very often not met in practical applications. This is usually due to the stiffness of the hydraulic system being too low. As a result, additional corrections are required to achieve the required positioning precision. Unfortunately, this means additional energy losses in the hydraulic control system. In this study, this problem is presented using the example of a hydraulic steering system for an articulated frame steer vehicle. This hydraulic steering system should provide the required directional stability for road traffic safety reasons. So far, this issue, connected mainly with the harmful phenomenon of so-called vehicle snaking behaviour, has not been solved sufficiently practically. To meet the needs of industrial practice, taking into account the current global state of knowledge and technology, Wrocław University of Science and Technology is performing comprehensive experimental and computational studies on the snaking behaviour of an articulated frame steer wheeled commercial vehicle. The results of these tests and analyses showed that the main cause of problems that lead to the snaking behaviour of this vehicle class is the effective torsional stiffness of the hydraulic steering system. For this reason, a novel mathematical model of the effective torsional stiffness was developed and validated. This model comprehensively took into account all important mechanical and hydraulic factors that affect the stiffness of a hydraulic system, resulting in the examined snaking behaviour. Because of this, it is possible at the design stage to select the optimal parameters of the hydraulic steering system to minimise any adverse influence on the snaking behaviour of articulated frame steer wheeled vehicles. This leads to minimising the number of required corrections and minimising energy losses in this hydraulic steering system. The innovative model presented in the article can be used to optimise positioning accuracy, for example, in manipulators and any mechanical system with hydraulic steering of any system of any mechanical parts.

Suggested Citation

  • Piotr Dudziński & Aleksander Skurjat, 2022. "Impact of Hydraulic System Stiffness on Its Energy Losses and Its Efficiency in Positioning Mechanical Systems," Energies, MDPI, vol. 15(1), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:294-:d:716246
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/294/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/294/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirosław Przybysz & Marian Janusz Łopatka & Arkadiusz Rubiec & Piotr Krogul & Karol Cieślik & Marcin Małek, 2022. "Influence of Hydraulic Drivetrain Configuration on Kinematic Discrepancy and Energy Consumption during Obstacle Overcoming in a 6 × 6 All-Wheel Hydraulic Drive Vehicle," Energies, MDPI, vol. 15(17), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:294-:d:716246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.