Author
Listed:
- Mikołaj Matuszczak
(Department of Air Conditioning, Heating, Gas Engineering and Air Protection, Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27 St., 50-370 Wrocław, Poland)
- Sławomir Pietrowicz
(Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27 St., 50-370 Wrocław, Poland)
Abstract
In the paper, experimental analyses of the free convection heating transfer in a flat wavy-fin heat exchanger with the dimensions of 500 × 500 mm were investigated. The experimental reserch mainly included determining the average heat flux and heat-transfer coefficient for two selected types of finned heat exchangers. First, tests were conducted for exchangers without considering the so-called ’chimney’ effect; these tests will be treated as reference studies. Then, experiments for specially designed ’chimneys’ over the exchanger with heights of 350, 850, and 1350 mm, respectively, were carried out again. The analyses were performed for an average temperature difference between the heat-exchange surface and the environment in the range of 18 to 55 K. The experimental results demonstrated that, compared to the exchanger without a chimney, the addition of a chimney significantly affects the improvement in the thermal performance of the heat exchanger under natural convection conditions. Regarding the variant without a chimney, when a chimney is used with the highest height of 1350 mm and a maximum temperature difference of 55 K, the average heat flux increases by approximately 450% and the average heat-transfer coefficient is approximately 10 times higher. The heat exchanger characterised by lower airflow resistance showed higher values of average heat flux of 5 to 45% in the Rayleigh number range of 25 to 180. Studies have indicated that in some cases, a simple modification of the geometry of the heat exchanger leads to significant improvements in thermal performance and, in extreme cases, to the elimination of supporting equipment such as fans.
Suggested Citation
Mikołaj Matuszczak & Sławomir Pietrowicz, 2022.
"An Experimental Investigation of Increasing the Thermal Efficiency of a Finned Tube Heat Exchanger by Using the Chimney Effect,"
Energies, MDPI, vol. 15(19), pages 1-16, October.
Handle:
RePEc:gam:jeners:v:15:y:2022:i:19:p:7310-:d:933770
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7310-:d:933770. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.