IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7039-d924731.html
   My bibliography  Save this article

Robust Differentiator-Based NeuroFuzzy Sliding Mode Control Strategies for PMSG-WECS

Author

Listed:
  • Malak Adnan Khan

    (Department of Electronics Engineering, Abbotabad Campus, University of Engineering and Technology, Peshawar 22020, Pakistan)

  • Qudrat Khan

    (Center for Advanced Studies in Telecommunications, COMSATS University, Islamabad 45550, Pakistan)

  • Laiq Khan

    (Department of Electrical Engineering, COMSATS University, Islamabad 45550, Pakistan)

  • Imran Khan

    (Department of Electrical Engineering, College of Engineering and Technology, University of Sargodha, Sargodha 40100, Pakistan)

  • Ahmad Aziz Alahmadi

    (Department of Electrical Engineering, Faculty of Engineering, Taif University, Taif 21944, Saudi Arabia)

  • Nasim Ullah

    (Department of Electrical Engineering, Faculty of Engineering, Taif University, Taif 21944, Saudi Arabia)

Abstract

A robust control algorithm is always needed to harvest maximum power from a Wind Energy Conversion System (WECS) by operating it consistently at a Maximum Power Point (MPP) in the presence of wind speed variations. In this work, a Maximum Power Point Tracking (MPPT) control algorithm is designed via Conventional Sliding Mode Control (CSMC), the Super Twisting Algorithm (STA), and the Real Twisting Algorithm (RTA) and is applied to a Permanent Magnet Synchronous Generator (PMSG)-based WECS. CSMC is model-based whereas the STA and RTA are model-free controllers. In practice, the unavailability of nonlinear terms and aerodynamic forces deteriorates the performance of these controllers. Thus, an offline NeuroFuzzy algorithm is incorporated to estimate the nonlinear drift and control input channel to improve the robustness of these algorithms. In addition, the generator shaft speed and its missing derivative is recovered via a Uniform Robust Exact Differentiator (URED). In order to carry out a comprehensive comparative study among the three competitors, the overall system is simulated in a closed loop under the action of these controllers at three different operating conditions, i.e., nominal, varying load and inertia, and varying wind speed, using MATLAB/Simulink. The acquired results confirm the superiority of the RTA over the STA and CSMC in terms of robustness and chatter reduction.

Suggested Citation

  • Malak Adnan Khan & Qudrat Khan & Laiq Khan & Imran Khan & Ahmad Aziz Alahmadi & Nasim Ullah, 2022. "Robust Differentiator-Based NeuroFuzzy Sliding Mode Control Strategies for PMSG-WECS," Energies, MDPI, vol. 15(19), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7039-:d:924731
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7039/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7039/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Di Piazza, A. & Di Piazza, M.C. & La Tona, G. & Luna, M., 2021. "An artificial neural network-based forecasting model of energy-related time series for electrical grid management," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 184(C), pages 294-305.
    2. Baroudi, Jamal A. & Dinavahi, Venkata & Knight, Andrew M., 2007. "A review of power converter topologies for wind generators," Renewable Energy, Elsevier, vol. 32(14), pages 2369-2385.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bizhani, Hamed & Noroozian, Reza & Muyeen, S.M. & Blaabjerg, Frede, 2022. "Grid integration of multiple wind turbines using a multi-port converter—A novel simultaneous space vector modulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    3. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    4. Zhang, Cai Wen & Zhang, Tieling & Chen, Nan & Jin, Tongdan, 2013. "Reliability modeling and analysis for a novel design of modular converter system of wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 86-94.
    5. Seixas, M. & Melício, R. & Mendes, V.M.F. & Couto, C., 2016. "Blade pitch control malfunction simulation in a wind energy conversion system with MPC five-level converter," Renewable Energy, Elsevier, vol. 89(C), pages 339-350.
    6. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    7. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    8. Ahmed G. Abo-Khalil & Ali S. Alghamdi & Ali M. Eltamaly & M. S. Al-Saud & Praveen R. P. & Khairy Sayed & G. R. Bindu & Iskander Tlili, 2019. "Design of State Feedback Current Controller for Fast Synchronization of DFIG in Wind Power Generation Systems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    9. Massimiliano Luna & Giuseppe La Tona & Angelo Accetta & Marcello Pucci & Andrea Pietra & Maria Carmela Di Piazza, 2023. "Optimal Management of Battery and Fuel Cell-Based Decentralized Generation in DC Shipboard Microgrids," Energies, MDPI, vol. 16(4), pages 1-21, February.
    10. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    11. Farihan Mohamad & Jiashen Teh & Ching-Ming Lai & Liang-Rui Chen, 2018. "Development of Energy Storage Systems for Power Network Reliability: A Review," Energies, MDPI, vol. 11(9), pages 1-19, August.
    12. Mohamed Abdelrahem & Christoph Hackl & Ralph Kennel & Jose Rodriguez, 2021. "Low Sensitivity Predictive Control for Doubly-Fed Induction Generators Based Wind Turbine Applications," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    13. Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    14. Xie, Da & Lu, Yupu & Sun, Junbo & Gu, Chenghong, 2017. "Small signal stability analysis for different types of PMSGs connected to the grid," Renewable Energy, Elsevier, vol. 106(C), pages 149-164.
    15. Sareni, B. & Abdelli, A. & Roboam, X. & Tran, D.H., 2009. "Model simplification and optimization of a passive wind turbine generator," Renewable Energy, Elsevier, vol. 34(12), pages 2640-2650.
    16. Nasiri, M. & Milimonfared, J. & Fathi, S.H., 2015. "A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 399-415.
    17. Alan Turnbull & Conor McKinnon & James Carrol & Alasdair McDonald, 2022. "On the Development of Offshore Wind Turbine Technology: An Assessment of Reliability Rates and Fault Detection Methods in a Changing Market," Energies, MDPI, vol. 15(9), pages 1-20, April.
    18. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    19. Nayeripour, Majid & Mahdi Mansouri, M., 2015. "An advanced analytical calculation and modeling of the electrical and mechanical harmonics behavior of Doubly Fed Induction Generator in wind turbine," Renewable Energy, Elsevier, vol. 81(C), pages 275-285.
    20. Marco Palmieri & Salvatore Bozzella & Giuseppe Leonardo Cascella & Marco Bronzini & Marco Torresi & Francesco Cupertino, 2018. "Wind Micro-Turbine Networks for Urban Areas: Optimal Design and Power Scalability of Permanent Magnet Generators," Energies, MDPI, vol. 11(10), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7039-:d:924731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.