IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p6892-d920304.html
   My bibliography  Save this article

Generation and Emission Characteristics of Fine Particles Generated by Power Plant Circulating Fluidized Bed Boiler

Author

Listed:
  • Heming Dong

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Yu Zhang

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Qian Du

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Jianmin Gao

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Qi Shang

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Dongdong Feng

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Yudong Huang

    (School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China)

Abstract

The generation and emission characteristics of fine particulates (PM 2.5 ) from three 300 MW power plant circulating fluidized bed boilers were investigated. One boiler had an external bed and used an electrostatic precipitator, the other two used an electrostatic filter precipitator and fabric filter, respectively. The particle size distribution of fine particles was performed by an electrical low-pressure impactor. PM 2.5 samplers were used at the same time to collect fine particles for subsequent laboratory analysis. The results show that the number size distributions of fine particles presented one single peak, but there was no peak in mass size distributions. The mass concentrations of three CFB boilers were similar, but the number concentration of the external bed CFB boiler was much higher than that of the general CFB boiler. The minimum removal efficiencies of the precipitator appeared between 0.1~1 μm, but the locations of the minimum point were different. The morphology of fine particles was mostly irregular. The highest content of fine particles was insoluble oxides and the content of S element was also high. Different precipitators have different removal effects on Si, Al, Ca, S and Fe in fine particles, but they all have poor removal effects on Na and K as well as OC and EC.

Suggested Citation

  • Heming Dong & Yu Zhang & Qian Du & Jianmin Gao & Qi Shang & Dongdong Feng & Yudong Huang, 2022. "Generation and Emission Characteristics of Fine Particles Generated by Power Plant Circulating Fluidized Bed Boiler," Energies, MDPI, vol. 15(19), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6892-:d:920304
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/6892/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/6892/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yao, Q. & Li, S.-Q. & Xu, H.-W. & Zhuo, J.-K. & Song, Q., 2010. "Reprint of: Studies on formation and control of combustion particulate matter in China: A review," Energy, Elsevier, vol. 35(11), pages 4480-4493.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingai Jin & Yanwei Sun & Yuanbo Zhang & Zhipeng Jiang, 2022. "Research on Air Distribution Control Strategy of Supercritical Boiler," Energies, MDPI, vol. 16(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuan, Weiwei & Zhang, Yongquan & Zhang, Jiansheng, 2022. "Chemistry variation of slag and the layered characteristics of deposits in an industrialized entrained-flow gasifier system with radiant syngas cooler," Energy, Elsevier, vol. 260(C).
    2. Crespo, Bárbara & Patiño, David & Regueiro, Araceli & Granada, Enrique, 2016. "Performance of a lab-scale tubular-type electrostatic precipitator using a diesel engine particle emission source," Energy, Elsevier, vol. 116(P3), pages 1444-1453.
    3. Mohsin Raza & Longfei Chen & Felix Leach & Shiting Ding, 2018. "A Review of Particulate Number (PN) Emissions from Gasoline Direct Injection (GDI) Engines and Their Control Techniques," Energies, MDPI, vol. 11(6), pages 1-26, June.
    4. Beatrice Castellani & Elena Morini & Mirko Filipponi & Andrea Nicolini & Massimo Palombo & Franco Cotana & Federico Rossi, 2014. "Comparative Analysis of Monitoring Devices for Particulate Content in Exhaust Gases," Sustainability, MDPI, vol. 6(7), pages 1-21, July.
    5. Shizhang Wang & Junjie Wang & Yu Zhang & Linhan Dong & Heming Dong & Qian Du & Jianmin Gao, 2023. "Effect of External Mineral Addition on PM Generated from Zhundong Coal Combustion," Energies, MDPI, vol. 16(2), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6892-:d:920304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.