IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6848-d918926.html
   My bibliography  Save this article

Water Recuperation from Hydrogen Fuel Cell during Aerial Mission

Author

Listed:
  • Lev Zakhvatkin

    (Department of Mechanical Engineering and Mechatronics, Ariel University, P.O. Box 3, Ariel 44837, Israel)

  • Alex Schechter

    (Department of Chemical Sciences, Ariel University, P.O. Box 3, Ariel 44837, Israel)

  • Idit Avrahami

    (Department of Mechanical Engineering and Mechatronics, Ariel University, P.O. Box 3, Ariel 44837, Israel)

Abstract

A water recuperation system (WRS) from an open-cathode proton exchange membrane fuel cell (PEMFC) is designed to increase the energy density of hydrogen production by hydrolysis of metal hydrides. WRS may significantly reduce the water weight in the carried fuel. The design is based on circulating the humid air through the PEMFC stack in a closed dome. To ensure oxygen supply to the PEMFC, the WRS has a ventilation inlet and an exhaust outlet. The required conditions for ventilation flow are developed theoretically and examined experimentally in a WRS prototype with a commercial PEMFC at 20–100 W. The experimental system includeds a closed dome, an edge cooling system for the PEMFC, a controllable ventilation air inlet, and an exhaust port. The humid exhaust air was cooled down to the ambient temperature to improve vapor condensation. Results show high efficiency (80% recuperated water from prediction), with a potential to achieve gravimetric hydrogen storage capacity (GHSC) of >6 wt% at an ambient temperature of 27 °C. The described principle may be applied for small fixed-wing drones where the cold ambient air may be utilized both for providing oxygen supply and for thermal management of the PEMFC and the humid exhaust, thus allowing higher GHSC.

Suggested Citation

  • Lev Zakhvatkin & Alex Schechter & Idit Avrahami, 2022. "Water Recuperation from Hydrogen Fuel Cell during Aerial Mission," Energies, MDPI, vol. 15(18), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6848-:d:918926
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6848/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6848/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhosale, Amit C. & Ghosh, Prakash C. & Assaud, Loïc, 2020. "Preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells and unitized regenerative fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhonghao & Guo, Mengdi & Yu, Zhonghao & Yao, Siyue & Wang, Jin & Qiu, Diankai & Peng, Linfa, 2022. "A novel cooperative design with optimized flow field on bipolar plates and hybrid wettability gas diffusion layer for proton exchange membrane unitized regenerative fuel cell," Energy, Elsevier, vol. 239(PD).
    2. Xun, Dengye & Hao, Han & Sun, Xin & Geng, Jingxuan & Liu, Zongwei & Zhao, Fuquan, 2022. "Modeling the evolvement of regional fuel cell vehicle supply chain: Implications for enhancing supply chain sustainability," International Journal of Production Economics, Elsevier, vol. 249(C).
    3. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Zhenyu Jin & Yingqing Guo & Chaozhi Qiu, 2022. "Electro-Conversion of Carbon Dioxide to Valuable Chemicals in a Membrane Electrode Assembly," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    5. Yu, Xingzi & Zhang, Caizhi & Li, Mengxiao & Wang, Gucheng & Tu, Zhengkai & Yu, Tao & Dong, Hui & Zhao, Fuqiang, 2024. "Thermal management of an open-cathode PEMFC based on constraint generalized predictive control and optimized strategy," Renewable Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6848-:d:918926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.