IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6532-d909219.html
   My bibliography  Save this article

Study on the Coal Pillar Weakening Technology in Close Distance Multi-Coal Seam Goaf

Author

Listed:
  • Jie Zhang

    (School of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Qingsong Zhuo

    (School of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Sen Yang

    (School of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Tao Yang

    (School of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Bin Wang

    (School of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Wenyong Bai

    (School of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Jianjun Wu

    (School of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Shaoliang Xie

    (Foreign Language and Literature Institute, Xi’an International Studies University, Xi’an 710128, China)

Abstract

The pressure relief of coal pillars in close-distance multi-coal seam goaf is a complex engineering problem with the characteristics of “dynamic mine pressure”. Hence, this paper studies such problems. First, the influence factors of the coal pillar in the goaf on the mine pressure of the mining face of the lower coal seam under this condition were theoretically analyzed, and it was concluded that vertical stress is the most important element, followed by horizontal stress. Next, a physical similarity simulation experiment was designed to study the stress distribution law of the coal pillar floor in the goaf before and after pressure release and the damage depth. Finally, a technology and monitoring method for coal pillar blasting pressure alleviation in goaf were introduced and implemented in engineering practice. After the pressure is alleviated, the surrounding rock stress of the lower coal seam mining face is redistributed, and the vertical stress is decreased by 20%. The adjacent rock’s deformation is improved. This technology’s cost and safety advantages are extraordinary and helpful for mining coal seams over close distances.

Suggested Citation

  • Jie Zhang & Qingsong Zhuo & Sen Yang & Tao Yang & Bin Wang & Wenyong Bai & Jianjun Wu & Shaoliang Xie, 2022. "Study on the Coal Pillar Weakening Technology in Close Distance Multi-Coal Seam Goaf," Energies, MDPI, vol. 15(18), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6532-:d:909219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6532/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6532/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaoyu Liu & Manchao He & Jiong Wang & Zimin Ma, 2021. "Research on Non-Pillar Coal Mining for Thick and Hard Conglomerate Roof," Energies, MDPI, vol. 14(2), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengrong Xie & Yiyi Wu & Fangfang Guo & Hang Zou & Dongdong Chen & Xiao Zhang & Xiang Ma & Ruipeng Liu & Chaowen Wu, 2022. "Application of Pre-Splitting and Roof-Cutting Control Technology in Coal Mining: A Review of Technology," Energies, MDPI, vol. 15(17), pages 1-20, September.
    2. Shengrong Xie & Fangfang Guo & Yiyi Wu, 2022. "Control Techniques for Gob-Side Entry Driving in an Extra-Thick Coal Seam with the Influence of Upper Residual Coal Pillar: A Case Study," Energies, MDPI, vol. 15(10), pages 1-21, May.
    3. Xuming Zhou & Haotian Li & Xuelong Li & Jianwei Wang & Jingjing Meng & Mingze Li & Chengwei Mei, 2022. "Research on Gob-Side Entry Retaining Mining of Fully Mechanized Working Face in Steeply Inclined Coal Seam: A Case in Xinqiang Coal Mine," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    4. Chaowen Hu & Eryu Wang & Qian Li & Yilong Wang & Yongyuan Li & Xingfeng Sha, 2022. "Research on the Key Technology of Gob-Side Entry Retaining by Roof Cutting for Thick and Hard Sandstone Roofs," Sustainability, MDPI, vol. 14(16), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6532-:d:909219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.