IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p6053-d893689.html
   My bibliography  Save this article

Torque Superposition Compensation Fault-Tolerant Control for Dual Three-Phase PMSM with an Inverter Single-Leg Open-Circuit Fault

Author

Listed:
  • Yongyang Zhou

    (College of Information Science and Technology, Donghua University, Shanghai 201620, China)

  • Fei Yao

    (College of Information Science and Technology, Donghua University, Shanghai 201620, China)

  • Shuguang Zhao

    (College of Information Science and Technology, Donghua University, Shanghai 201620, China)

Abstract

Dual three-phase permanent-magnet synchronous motors (PMSM) have wide applications in electric vehicles due to advantages such as excellent control performance and outstanding fault tolerance capability. However, present fault-tolerant control of inverter single-leg open-circuit faults cannot make full use of each phase winding of the motor, which limits the torque-production capability. This paper proposes a torque superposition compensation (TSC) control which can minimize the stator copper losses while increasing the torque-production capability. The phase winding originally connected to the faulty inverter leg is then linked to the DC-link mid-point. Thus, the winding in the faulty phase can be utilized to generate an additional torque. The symmetric dual three-phase windings torque model and the asymmetric five-phase windings compensation torque model for U d /2 voltage level are constructed according to the torque superposition, respectively. Then, the three-subplane decomposition transformation matrix for the post-fault dual three-phase PMSM is derived, and the decoupling model in the d-q subplane is constructed, which achieves the optimal enhancement of the torque-production capability. The simulation results verify the effectiveness of the proposed TSC fault-tolerant control.

Suggested Citation

  • Yongyang Zhou & Fei Yao & Shuguang Zhao, 2022. "Torque Superposition Compensation Fault-Tolerant Control for Dual Three-Phase PMSM with an Inverter Single-Leg Open-Circuit Fault," Energies, MDPI, vol. 15(16), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6053-:d:893689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/6053/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/6053/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jian Zheng & Shoudao Huang & Fei Rong & Mingcheng Lye, 2018. "Six-Phase Space Vector PWM under Stator One-Phase Open-Circuit Fault Condition," Energies, MDPI, vol. 11(7), pages 1-21, July.
    2. Ting Yang & Takahiro Kawaguchi & Seiji Hashimoto & Wei Jiang, 2020. "Switching Sequence Model Predictive Direct Torque Control of IPMSMs for EVs in Switch Open-Circuit Fault-Tolerant Mode," Energies, MDPI, vol. 13(21), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyungkwan Jang & Hyunwoo Kim & Huai-Cong Liu & Ho-Joon Lee & Ju Lee, 2021. "Investigation on the Torque Ripple Reduction Method of a Hybrid Electric Vehicle Motor," Energies, MDPI, vol. 14(5), pages 1-13, March.
    2. Chi Zhang & Binyue Xu & Jasronita Jasni & Mohd Amran Mohd Radzi & Norhafiz Azis & Qi Zhang, 2023. "Three Voltage Vector Duty Cycle Optimization Strategy of the Permanent Magnet Synchronous Motor Driving System for New Energy Electric Vehicles Based on Finite Set Model Predictive Control," Energies, MDPI, vol. 16(6), pages 1-18, March.
    3. Dong-Kyun Son & Soon-Ho Kwon & Dong-Ok Kim & Hee-Sue Song & Geun-Ho Lee, 2021. "Control Comparison for the Coordinate Transformation of an Asymmetric Dual Three Phase Synchronous Motor in Healthy and Single-Phase Open Fault States," Energies, MDPI, vol. 14(6), pages 1-14, March.
    4. Qiwu Luo & Jian Zheng & Yichuang Sun & Lijun Yang, 2018. "Optimal Modeled Six-Phase Space Vector Pulse Width Modulation Method for Stator Voltage Harmonic Suppression," Energies, MDPI, vol. 11(10), pages 1-16, September.
    5. Zehao Lyu & Xiang Wu & Jie Gao & Guojun Tan, 2021. "An Improved Finite-Control-Set Model Predictive Current Control for IPMSM under Model Parameter Mismatches," Energies, MDPI, vol. 14(19), pages 1-13, October.
    6. Seon-Ik Hwang & Jang-Mok Kim, 2021. "Opposite Triangle Carrier with SVPWM for Common-Mode Voltage Reduction in Dual Three Phase Motor Drives," Energies, MDPI, vol. 14(2), pages 1-12, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6053-:d:893689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.