Author
Listed:
- Samuel T. Ojetola
(Sandia National Laboratories, Albuquerque, NM 87123, USA)
- Josh Wold
(Schweitzer Engineering Laboratories, Butte, MT 59701, USA)
- Daniel Trudnowski
(Department of Electrical Engineering, Montana Technological University, Butte, MT 59701, USA)
Abstract
Power systems are subjected to a wide range of disturbances during daily operations. Severe disturbances, such as a loss of a large generator, a three-phase bolted fault on a generator bus, or a loss of a transmission line, can lead to the loss of synchronism of a generator or group of generators. The ability of a power system to maintain synchronism during the few seconds after being subjected to a severe disturbance is known as transient stability. Most of the modern methods of controlling transient stability involve special protection schemes or remedial action schemes. These special protection schemes sense predetermined system conditions and take corrective actions, such as generator tripping or generation re-dispatch, in real time to maintain transient stability. Another method is the use of a real-time feedback control system to modulate the output of an actuator in response to a signal. This paper provides a fundamental evaluation of the use of feedback control strategies to improve transient stability in a power system. An optimal feedback control strategy that modulates the real power injected and absorbed by distributed energy-storage devices is proposed. Its performance is evaluated on a four-machine power system and on a 34-machine reduced-order model of the Western North American Power System. The result shows that the feedback control strategy can increase the critical fault clearing time by 60%, thereby improving the transient stability of the power system.
Suggested Citation
Samuel T. Ojetola & Josh Wold & Daniel Trudnowski, 2022.
"Feedback Control Strategy for Transient Stability Application,"
Energies, MDPI, vol. 15(16), pages 1-20, August.
Handle:
RePEc:gam:jeners:v:15:y:2022:i:16:p:6016-:d:892519
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6016-:d:892519. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.