IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5711-d881599.html
   My bibliography  Save this article

Constrained Optimization of a Hydraulic Actuation System

Author

Listed:
  • Michael T. Fox

    (Walter Scott Jr. College of Engineering, Colorado State University, Fort Collins, CO 80523, USA)

  • Edwin K. P. Chong

    (Walter Scott Jr. College of Engineering, Colorado State University, Fort Collins, CO 80523, USA)

Abstract

Operators of mobile platforms that employ hydraulic actuation, such as excavators, seek more efficient power transfer from source to load. Pump-controlled architectures achieve greater efficiency than valve-controlled architectures but exhibit poor tracking performance. We present a system-design optimization technique that ensures compliance with design requirements and minimizes peak input power, which correlates inversely with efficiency. We utilize the optimization technique to size a valve-controlled hydraulically actuated stabilized mount on a mobile platform. Our optimization framework accounts for the disturbance spectrum, a stabilization performance measure, the system dynamics, and control system design. Our technique features automated requirement derivation in the form of a parameter estimation, which supports design decisions under constraints. Our results show that one of four inequality constraints is active. This constraint represents a common design rule and results in limiting efficiency. We show that relaxing this constraint is practically feasible and leads to higher efficiency in achieving the required performance. We propose adding an inerter to justify the relaxed constraint and present the resulting open-loop servo transfer function.

Suggested Citation

  • Michael T. Fox & Edwin K. P. Chong, 2022. "Constrained Optimization of a Hydraulic Actuation System," Energies, MDPI, vol. 15(15), pages 1-12, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5711-:d:881599
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5711/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5711/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaobo Liu & Yiting Xia & Yifeng Ji & Wenbo Lai & Jiang Li & Yicheng Yin & Jialing Qi & Yating Chang & Hao Sun, 2023. "Balancing Urban Expansion and Ecological Connectivity through Ecological Network Optimization—A Case Study of ChangSha County," Land, MDPI, vol. 12(7), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5711-:d:881599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.