IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5687-d880942.html
   My bibliography  Save this article

On the Water-Oil Relative Permeabilities of Southern Algerian Sandstone Rock Samples

Author

Listed:
  • Sami Yahyaoui

    (Laboratoire de Valoriation des Energies Fossiles, Département de Gènie Chimique, Ecole Nationale Polytechnique, 10 Avenue Hassen Badi, BP 182, El Harrach, Algiers 16200, Algeria)

  • Rezki Akkal

    (Laboratoire de Valoriation des Energies Fossiles, Département de Gènie Chimique, Ecole Nationale Polytechnique, 10 Avenue Hassen Badi, BP 182, El Harrach, Algiers 16200, Algeria)

  • Mohammed Khodja

    (Institut Algérien du Pétrole (IAP), Sonatrach, Avenue du 1er Novembre, Boumerdees 35000, Algeria)

  • Toudert Ahmed Zaid

    (Laboratoire de Valoriation des Energies Fossiles, Département de Gènie Chimique, Ecole Nationale Polytechnique, 10 Avenue Hassen Badi, BP 182, El Harrach, Algiers 16200, Algeria)

Abstract

The water–oil relative permeability behavior of different plugs from the Hassi Messaoud reservoir in south Algeria has been investigated to understand the fundamental processes of two-phase flow taking place within the macro-structure of rock samples. The experiments were conducted on cylindrical reservoir samples (plugs) using the unsteady-state method to measure the oil–water relative permeabilities due to operational simplicity. The impact of factors such as wettability, overburden pressure and rock characteristics based on the relative permeability curves have been carefully assessed. During this test, temperature was kept in the range of 95 to 100 °C and pressure was maintained at 100 bar. Large variations in relative permeability curve trends have been experimentally observed for different rock samples under investigation, which can be explained by the heterogeneous nature of the studied reservoir. Results showed an intermediate alteration of wettability and for all studied samples, and the intersection point of the relative permeability values for oil and water is less than 50%, showing that these samples exhibit oil-wet behavior. Our results also show that displacement pressure increases from 0.13 to 2 psi, promoting a gradual displacement of oil relative permeability (Kro) toward higher saturations in water (45% to 60%). The results show that the oil recovery rate at breakthrough is approximately 16% to 28% of the initial oil in place (IOP), with an average of 23%. The final oil recovery rate, obtained by moving at constant pressure, ranges from 43% to 55% of the initial oil in place (IOP), with an average value of around 49%. The forced displacement at the end of the performed tests increased the average recovery rate by about 4%. These rates vary from 46% to 61% of the initial oil in place (IOP). The residual oil saturation (Sor) varies from 33.7% to 47.8% relative to pore volume (Vp); the average is about 42%. The residual oil saturation (Sor) is about 30% to 45% Vp after forced displacement at the end of the test, the average is about 38.5%, and the relative permeabilities Krw and Kro are equal to the water saturations of 33% to 50%; the average value is about 41%.

Suggested Citation

  • Sami Yahyaoui & Rezki Akkal & Mohammed Khodja & Toudert Ahmed Zaid, 2022. "On the Water-Oil Relative Permeabilities of Southern Algerian Sandstone Rock Samples," Energies, MDPI, vol. 15(15), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5687-:d:880942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5687/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5687/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bentley, R. W., 2002. "Global oil & gas depletion: an overview," Energy Policy, Elsevier, vol. 30(3), pages 189-205, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ugo Bardi & Alessandro Lavacchi, 2009. "A Simple Interpretation of Hubbert’s Model of Resource Exploitation," Energies, MDPI, vol. 2(3), pages 1-16, August.
    2. Costantini, Valeria & Gracceva, Francesco & Markandya, Anil & Vicini, Giorgio, 2007. "Security of energy supply: Comparing scenarios from a European perspective," Energy Policy, Elsevier, vol. 35(1), pages 210-226, January.
    3. Pearce, Joshua M. & Johnson, Sara J. & Grant, Gabriel B., 2007. "3D-mapping optimization of embodied energy of transportation," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 435-453.
    4. Mason, James E., 2007. "World energy analysis: H2 now or later?," Energy Policy, Elsevier, vol. 35(2), pages 1315-1329, February.
    5. Jakobsson, Kristofer & Söderbergh, Bengt & Höök, Mikael & Aleklett, Kjell, 2009. "How reasonable are oil production scenarios from public agencies?," Energy Policy, Elsevier, vol. 37(11), pages 4809-4818, November.
    6. Lin, Boqiang & Liu, Jianghua & Yang, Yingchun, 2012. "Impact of carbon intensity and energy security constraints on China's coal import," Energy Policy, Elsevier, vol. 48(C), pages 137-147.
    7. Szklo, Alexandre & Schaeffer, Roberto, 2006. "Alternative energy sources or integrated alternative energy systems? Oil as a modern lance of Peleus for the energy transition," Energy, Elsevier, vol. 31(14), pages 2513-2522.
    8. Brandt, Adam R. & Plevin, Richard J. & Farrell, Alexander E., 2010. "Dynamics of the oil transition: Modeling capacity, depletion, and emissions," Energy, Elsevier, vol. 35(7), pages 2852-2860.
    9. Gilbert, Richard & Perl, Anthony, 2007. "Grid-connected vehicles as the core of future land-based transport systems," Energy Policy, Elsevier, vol. 35(5), pages 3053-3060, May.
    10. Gomes, Gabriel Lourenço & Szklo, Alexandre & Schaeffer, Roberto, 2009. "The impact of CO2 taxation on the configuration of new refineries: An application to Brazil," Energy Policy, Elsevier, vol. 37(12), pages 5519-5529, December.
    11. Ellison, Martin & Scott, Andrew, 2013. "Learning and price volatility in duopoly models of resource depletion," Journal of Monetary Economics, Elsevier, vol. 60(7), pages 806-820.
    12. Szklo, Alexandre Salem & Machado, Giovani & Schaeffer, Roberto & Felipe Simoes, Andre & Barboza Mariano, Jacqueline, 2006. "Placing Brazil's heavy acid oils on international markets," Energy Policy, Elsevier, vol. 34(6), pages 692-705, April.
    13. Persson, Tobias A. & Azar, C. & Johansson, D. & Lindgren, K., 2007. "Major oil exporters may profit rather than lose, in a carbon-constrained world," Energy Policy, Elsevier, vol. 35(12), pages 6346-6353, December.
    14. Yang, Guangfei & Li, Xianneng & Wang, Jianliang & Lian, Lian & Ma, Tieju, 2015. "Modeling oil production based on symbolic regression," Energy Policy, Elsevier, vol. 82(C), pages 48-61.
    15. Foran, Barney & Lenzen, Manfred & Dey, Christopher & Bilek, Marcela, 2005. "Integrating sustainable chain management with triple bottom line accounting," Ecological Economics, Elsevier, vol. 52(2), pages 143-157, January.
    16. Liu, Zhen-hua & Hu, Ren-Lin & Chen, Xiu-juan, 2014. "A novel integrated solar desalination system with multi-stage evaporation/heat recovery processes," Renewable Energy, Elsevier, vol. 64(C), pages 26-33.
    17. Klaudia Wilk, 2019. "Experimental and Simulation Studies of Energized Fracturing Fluid Efficiency in Tight Gas Formations," Energies, MDPI, vol. 12(23), pages 1-17, November.
    18. Talal AL-Bazali & Mohammad Al-Zuhair, 2022. "The Use of Fuzzy Logic to Assess Sustainability of Oil and Gas Resources (R/P): Technical, Economic and Political Perspectives," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 449-458, March.
    19. Bentley, R.W. & Mannan, S.A. & Wheeler, S.J., 2007. "Assessing the date of the global oil peak: The need to use 2P reserves," Energy Policy, Elsevier, vol. 35(12), pages 6364-6382, December.
    20. Mestres, Marc & Griñó, Maria & Sierra, Joan Pau & Mösso, César, 2016. "Analysis of the optimal deployment location for tidal energy converters in the mesotidal Ria de Vigo (NW Spain)," Energy, Elsevier, vol. 115(P1), pages 1179-1187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5687-:d:880942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.