IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5197-d865518.html
   My bibliography  Save this article

A Review of Grid Code Requirements for the Integration of Renewable Energy Sources in Ethiopia

Author

Listed:
  • Baseem Khan

    (Department of Electrical and Computer Engineering, Hawassa University, Hawassa 05, Ethiopia)

  • Josep M. Guerrero

    (Center for Research on Microgrids (CROM), AAU Energy, Aalborg University, 9220 Aalborg East, Denmark)

  • Sanjay Chaudhary

    (Center for Research on Microgrids (CROM), AAU Energy, Aalborg University, 9220 Aalborg East, Denmark)

  • Juan C. Vasquez

    (Center for Research on Microgrids (CROM), AAU Energy, Aalborg University, 9220 Aalborg East, Denmark)

  • Kenn H. B. Frederiksen

    (Kenergy ApS, Grønningen 43, 8700 Horsens, Denmark)

  • Ying Wu

    (Center for Research on Microgrids (CROM), AAU Energy, Aalborg University, 9220 Aalborg East, Denmark)

Abstract

Rapid integration of renewable energy into the electric grid has ramifications for grid management and planning. Therefore, system operators have formulated grid code requirements to ensure that the grid continues to operate in a secure, safe, and cost-effective manner. The current state of grid code in Ethiopia, as well as the need for it, is discussed in this article. It lays out the technological grid integration requirements, with a focus on small and microgrids, which are especially important for the integration of renewable. The barriers to grid code normalization and renewable energy grid compatibility testing are identified, and suggestions for continued grid code development in Ethiopia based on Danish observations are provided. Further, a detailed comparative analysis of the Ethiopian grid code with the IEEE 1547-2003 and IEEE 1547-2018 standards is presented.

Suggested Citation

  • Baseem Khan & Josep M. Guerrero & Sanjay Chaudhary & Juan C. Vasquez & Kenn H. B. Frederiksen & Ying Wu, 2022. "A Review of Grid Code Requirements for the Integration of Renewable Energy Sources in Ethiopia," Energies, MDPI, vol. 15(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5197-:d:865518
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ayetor, G.K. & Mbonigaba, Innocent & Sunnu, Albert K. & Nyantekyi-Kwakye, Baafour, 2021. "Impact of replacing ICE bus fleet with electric bus fleet in Africa: A lifetime assessment," Energy, Elsevier, vol. 221(C).
    2. Sabo, Mahmoud Lurwan & Mariun, Norman & Hizam, Hashim & Mohd Radzi, Mohd Amran & Zakaria, Azmi, 2017. "Spatial matching of large-scale grid-connected photovoltaic power generation with utility demand in Peninsular Malaysia," Applied Energy, Elsevier, vol. 191(C), pages 663-688.
    3. Ouammi, Ahmed, 2021. "Model predictive control for optimal energy management of connected cluster of microgrids with net zero energy multi-greenhouses," Energy, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Guo, Tianyu & Guo, Qi & Huang, Libin & Guo, Haiping & Lu, Yuanhong & Tu, Liang, 2023. "Microgrid source-network-load-storage master-slave game optimization method considering the energy storage overcharge/overdischarge risk," Energy, Elsevier, vol. 282(C).
    3. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    4. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    5. Sovacool, Benjamin K. & Daniels, Chux & AbdulRafiu, Abbas, 2022. "Transitioning to electrified, automated and shared mobility in an African context: A comparative review of Johannesburg, Kigali, Lagos and Nairobi," Journal of Transport Geography, Elsevier, vol. 98(C).
    6. Fathy, Ahmed, 2023. "Bald eagle search optimizer-based energy management strategy for microgrid with renewable sources and electric vehicles," Applied Energy, Elsevier, vol. 334(C).
    7. Fathy, Ahmed & Ferahtia, Seydali & Rezk, Hegazy & Yousri, Dalia & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid," Energy, Elsevier, vol. 247(C).
    8. Noorollahi, Younes & Ghenaatpisheh Senani, Ali & Fadaei, Ahmad & Simaee, Mobina & Moltames, Rahim, 2022. "A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP multi-criteria decision-making approach," Renewable Energy, Elsevier, vol. 186(C), pages 89-104.
    9. Shen, Xiaojun & Li, Xingyi & Yuan, Jiahai & Jin, Yu, 2022. "A hydrogen-based zero-carbon microgrid demonstration in renewable-rich remote areas: System design and economic feasibility," Applied Energy, Elsevier, vol. 326(C).
    10. Alfeus Sunarso & Kunhali Ibrahim-Bathis & Sakti A. Murti & Irwan Budiarto & Harold S. Ruiz, 2020. "GIS-Based Assessment of the Technical and Economic Feasibility of Utility-Scale Solar PV Plants: Case Study in West Kalimantan Province," Sustainability, MDPI, vol. 12(15), pages 1-12, August.
    11. Li, Penghua & Liu, Jianfei & Deng, Zhongwei & Yang, Yalian & Lin, Xianke & Couture, Jonathan & Hu, Xiaosong, 2022. "Increasing energy utilization of battery energy storage via active multivariable fusion-driven balancing," Energy, Elsevier, vol. 243(C).
    12. Jane Rose Atwongyeire & Arkom Palamanit & Adul Bennui & Mohammad Shakeri & Kuaanan Techato & Shahid Ali, 2022. "Assessment of Suitable Areas for Smart Grid of Power Generated from Renewable Energy Resources in Western Uganda," Energies, MDPI, vol. 15(4), pages 1-31, February.
    13. Couraud, Benoit & Andoni, Merlinda & Robu, Valentin & Norbu, Sonam & Chen, Si & Flynn, David, 2023. "Responsive FLEXibility: A smart local energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    14. Romain Mannini & Julien Eynard & Stéphane Grieu, 2022. "A Survey of Recent Advances in the Smart Management of Microgrids and Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-37, September.
    15. Wang, Peng & Zhang, Shuainan & Pu, Yanru & Cao, Shuchao & Zhang, Yuhu, 2021. "Estimation of photovoltaic power generation potential in 2020 and 2030 using land resource changes: An empirical study from China," Energy, Elsevier, vol. 219(C).
    16. Al Garni, Hassan Z. & Awasthi, Anjali, 2017. "Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia," Applied Energy, Elsevier, vol. 206(C), pages 1225-1240.
    17. Bouadila, Salwa & Baddadi, Sara & Skouri, Safa & Ayed, Rabeb, 2022. "Assessing heating and cooling needs of hydroponic sheltered system in mediterranean climate: A case study sustainable fodder production," Energy, Elsevier, vol. 261(PB).
    18. Chen, Lei & Gao, Lingyun & Xing, Shuping & Chen, Zhicong & Wang, Weiwei, 2024. "Zero-carbon microgrid: Real-world cases, trends, challenges, and future research prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    19. Lindberg, O. & Birging, A. & Widén, J. & Lingfors, D., 2021. "PV park site selection for utility-scale solar guides combining GIS and power flow analysis: A case study on a Swedish municipality," Applied Energy, Elsevier, vol. 282(PA).
    20. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5197-:d:865518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.