IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5177-d864578.html
   My bibliography  Save this article

Combustion Performance and Emission Characteristics of Marine Engine Burning with Different Biodiesel

Author

Listed:
  • Ning Yang

    (Tianjin Eco-Environmental Monitoring Center, Tianjin 300191, China)

  • Xiaowen Deng

    (Tianjin Eco-Environmental Monitoring Center, Tianjin 300191, China)

  • Bin Liu

    (Tianjin Eco-Environmental Monitoring Center, Tianjin 300191, China)

  • Liwei Li

    (Tianjin Eco-Environmental Monitoring Center, Tianjin 300191, China)

  • Yuan Li

    (Tianjin Eco-Environmental Monitoring Center, Tianjin 300191, China)

  • Peng Li

    (Tianjin Eco-Environmental Monitoring Center, Tianjin 300191, China)

  • Miao Tang

    (Tianjin Eco-Environmental Monitoring Center, Tianjin 300191, China
    Currently address: 1st Floor, Nankai University Press, No. 94 Weijin Road, Nankai District, Tianjin 300071, China.)

  • Lin Wu

    (Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
    Currently address: 1st Floor, Nankai University Press, No. 94 Weijin Road, Nankai District, Tianjin 300071, China.)

Abstract

Ship emissions are one of the main sources of air pollution in port cities. The prosperous maritime trade has brought great harm to the air quality of port cities while promoting the development of the world economy. During the berthing process, ship auxiliary machines emit a large amount of air pollutants, which have a great impact on air quality and public health. Alternative marine fuels are being studied and used frequently to reduce ship emissions. This research was carried out to investigate the gaseous and particles emission characteristics of a marine diesel engine during the application of experimental biodiesel fuels. To study the influence of mixed fuels on engine performance, measurements were made at different engine loads and speeds. Different diesel fuels were tested using various ratios between biodiesel and BD0 (ultra-low sulfur diesel) of 0%, 10%, 30%, 50%, 70%, 90%, and 100%. The results indicated the use of biodiesel has little influence on the combustion performance but has a certain impact on exhaust emissions. The octane number and laminar flame speed of biodiesel are higher than those of BD0, so the combustion time of the test diesel engine is shortened under the mixed mode of biodiesel. In addition, a high ratio of biodiesel leads to a decrease of the instantaneous peak heat release rate, causing the crank angle to advance. As the biodiesel blending ratio increased, most of the gaseous pollutants decreased, especially for CO, but it led to an increase of particle numbers. The particle size distribution exhibits a unimodal distribution under various conditions, with the peak value appearing at 30–75 nm. The use of biodiesel has no effect on this phenomenon. The peak positions strongly depend on fuel types and engine conditions. The particulate matter (PM) emitted from the test engine included large amounts of organic carbon (OC), which accounted for between 30% and 40% of PM. Whereas the elemental carbon (EC) accounted for between 10% and 20%, the water-soluble ions components accounted for 6–15%. Elemental components, which accounted for 3–8% of PM emissions, mainly consisted of Si, Fe, Sn, Ba, Al, Zn, V, and Ni. Generally, biodiesel could be a reliable alternative fuel to reduce ship auxiliary engine emissions at berth and improve port air quality.

Suggested Citation

  • Ning Yang & Xiaowen Deng & Bin Liu & Liwei Li & Yuan Li & Peng Li & Miao Tang & Lin Wu, 2022. "Combustion Performance and Emission Characteristics of Marine Engine Burning with Different Biodiesel," Energies, MDPI, vol. 15(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5177-:d:864578
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5177/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5177/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guido Marseglia & Blanca Fernandez Vasquez-Pena & Carlo Maria Medaglia & Ricardo Chacartegui, 2020. "Alternative Fuels for Combined Cycle Power Plants: An Analysis of Options for a Location in India," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    2. Apostolos Pesyridis & Muhammad Suleman Asif & Sadegh Mehranfar & Amin Mahmoudzadeh Andwari & Ayat Gharehghani & Thanos Megaritis, 2023. "Design of the Organic Rankine Cycle for High-Efficiency Diesel Engines in Marine Applications," Energies, MDPI, vol. 16(11), pages 1-17, May.
    3. Xinyan Pei & Hongyu Tian & William L. Roberts, 2022. "Swirling Flame Combustion of Heavy Fuel Oil Blended with Diesel: Effect of Asphaltene Concentration," Energies, MDPI, vol. 15(17), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okewu Emmanuel & Ananya M & Sanjay Misra & Murat Koyuncu, 2020. "A Deep Neural Network-Based Advisory Framework for Attainment of Sustainable Development Goals 1-6," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    2. Hebin Shen & Syed Ahtsham Ali & Majed Alharthi & Ali Shan Shah & Abdul Basit Khan & Qaiser Abbas & Saeed ur Rahman, 2021. "Carbon-Free Energy and Sustainable Environment: The Role of Human Capital and Technological Revolutions in Attaining SDGs," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    3. Mohamed Y. E. Selim & Mamdouh T. Ghannam & Bishoy N. Abdo & Youssef A. Attai & Mohsen S. Radwan, 2022. "Raw Jojoba Oil as a Sustainable Fuel to Diesel Engines and Comparison with Diesel Fuel," Energies, MDPI, vol. 15(16), pages 1-17, August.
    4. Mirosław Karczewski & Marcin Wieczorek, 2021. "Assessment of the Impact of Applying a Non-Factory Dual-Fuel (Diesel/Natural Gas) Installation on the Traction Properties and Emissions of Selected Exhaust Components of a Road Semi-Trailer Truck Unit," Energies, MDPI, vol. 14(23), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5177-:d:864578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.