IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4739-d850560.html
   My bibliography  Save this article

Coordinated Reactive Power Control with a Variable Shunt Reactor and an Inverter-Based Wind Power Plant

Author

Listed:
  • Seung-Ho Song

    (Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Korea)

  • Soo-Bin Kim

    (Korea Electric Power Research Institute, Daejeon 34056, Korea)

Abstract

Underground or submarine cables have a higher capacitance component than overhead lines, and they inject a large amount of capacitive reactive power into the system. A separate reactive power compensation device is required in order for a wind power plant (WPP) connected to the public network with a cable to meet the reactive power requirements required by the grid code. In this paper, a reactive power control using a variable shunt reactor (VSR) was proposed to satisfy the reactive power requirement required by the grid code for a WPP connected to the grid through a cable. The proposed reactive power control method compensates for the capacitive reactive power of the cable by using a VSR, and it follows the reactive power command through the reactive power control of a WPP. In the section where it is difficult to follow the WPP reactive power command only with the reactive power capacity of a WPP due to cable losses or a cable reactive power compensation error of the VSR, the reactive power control is additionally supported through the hysteresis control of the VSR. The proposed method satisfies the grid codes, and it enables fast and accurate reactive power control. The performance of the proposed method was verified through simulation using MATLAB/Simulink.

Suggested Citation

  • Seung-Ho Song & Soo-Bin Kim, 2022. "Coordinated Reactive Power Control with a Variable Shunt Reactor and an Inverter-Based Wind Power Plant," Energies, MDPI, vol. 15(13), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4739-:d:850560
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4739/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4739/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seung-Ho Song & Gyo-Won Tae & Alexandr Lim & Ye-Chan Kim, 2023. "Reactive Power Dispatch Algorithm for a Reduction in Power Losses in Offshore Wind Farms," Energies, MDPI, vol. 16(21), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4739-:d:850560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.