IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4700-d848827.html
   My bibliography  Save this article

A Flux−Linkage Torque Ripple Suppression Method of Dual−Series FPMSMs Decoupling Control Based on Dual−Frequency Vector Modulation

Author

Listed:
  • Guodong Sun

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Guijie Yang

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Jianyong Su

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Guangxu Lu

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

Abstract

A novel cross−series connection of two five−phase permanent magnet synchronous motors (FPMSM) supplied by single inverter can halve the number of required power units and current sensors. This, along with a decoupling control strategy for FPMSMs in series based on an improved dual−frequency vector modulation (DFV−SVPWM) and a flux−linkage torque ripple suppression method with current compensation are proposed in this paper, each of which have great significance for multi−unit industrial equipment. The third harmonic flux−linkage will produce torque ripple in the FPMSM in series, which has an adverse effect on accuracy. In this paper, a synchronous decoupling mathematical model of dual−series FPMSM with harmonic flux−linkage is established to analyze the decoupling relationship between torque and current. In addition, an enhanced DFV−SVPWM with higher modulation ratio is proposed for the decoupling control of double motors in series. Furthermore, based on the torque influence of two series−connected motors by harmonic flux−linkage and the decoupling control with improved DFV−SVPWM, a torque ripple compensation method with current compensation is proposed, which can effectively suppress the torque ripple of FPMSM with harmonic flux−linkage and not affect the other. The correctness and superiority of the scheme are verified by simulation and experiment in this paper.

Suggested Citation

  • Guodong Sun & Guijie Yang & Jianyong Su & Guangxu Lu, 2022. "A Flux−Linkage Torque Ripple Suppression Method of Dual−Series FPMSMs Decoupling Control Based on Dual−Frequency Vector Modulation," Energies, MDPI, vol. 15(13), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4700-:d:848827
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4700/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guodong Sun & Guijie Yang & Yanyi Wang & Jianyong Su, 2019. "Unified Fault-tolerant Control Strategy with Torque Ripple Compensation for Five-phase Permanent Magnet Synchronous Motor Based on Normal Decoupling," Energies, MDPI, vol. 12(6), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dingyu Wang & Yiguang Chen, 2020. "Fault-Tolerant Control of Coil Inter-Turn Short-Circuit in Five-Phase Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 13(21), pages 1-19, October.
    2. Jingde Xia & Shaozhuo Li & Shuping Gao & Wenquan Shao & Guobing Song & Changjiang Chen, 2021. "Research on Differential Protection of Generator Based on New Braking Mode," Energies, MDPI, vol. 14(7), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4700-:d:848827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.