IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4583-d845793.html
   My bibliography  Save this article

Development of a Bidirectional DC–DC Converter with Rapid Energy Bidirectional Transition Technology

Author

Listed:
  • Hsuan Liao

    (Department of Electrical and Electronics Engineering, National Cheng Kung University, Tainan City 701, Taiwan)

  • Yi-Tsung Chen

    (Department of Electrical and Electronics Engineering, National Cheng Kung University, Tainan City 701, Taiwan)

  • Linda Chen

    (Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand)

  • Jiann-Fuh Chen

    (Department of Electrical and Electronics Engineering, National Cheng Kung University, Tainan City 701, Taiwan)

Abstract

Bidirectional DC–DC converters are key devices in the DC distribution system and the energy storage system (ESS). It is important to consider the safety of the elements in the converter for rapid conversion of the power direction. Damages may occur to the power-related components in the circuit if the direction of the inductor current or the capacitor voltage changes instantaneously. To make the power flow change smoothly and quickly, this research proposed a bidirectional DC–DC converter with rapid energy transition technology implemented in the circuit architecture. The rapid energy bidirectional transition technology added a resonance path based on the LC resonant circuit, allowing rapid energy conversion through the resonance path. Therefore, the energy in the energy storage element could be quickly converted without causing circuit surges. Analyses of the converter operating in the step-up mode, the step-down mode, and the transition operation mode are presented. The proposed circuit architecture had a high voltage-conversion ratio and a simple architecture. A prototype bidirectional DC–DC converter with a full load of 500 W, a low side voltage of 24 V, and a high side voltage of 200 V was developed to prove the concept. The feasibility of the rapid energy bidirectional transition technology was verified by the simulation results and experimental results using the prototype converter. The maximum efficiencies in the step-up mode and the step-down mode were 95.3% and 93.8% respectively. Under full-load conditions, the transient time of the energy transition from the step-up mode to the step-down mode was 17.7 μs, and the transient time of the energy transition from the step-down mode to the step-up mode was 19.3 μs.

Suggested Citation

  • Hsuan Liao & Yi-Tsung Chen & Linda Chen & Jiann-Fuh Chen, 2022. "Development of a Bidirectional DC–DC Converter with Rapid Energy Bidirectional Transition Technology," Energies, MDPI, vol. 15(13), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4583-:d:845793
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4583/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4583/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bing-Zhang Chen & Hsuan Liao & Linda Chen & Jiann-Fuh Chen, 2022. "Design and Implementation of the Bidirectional DC-DC Converter with Rapid Energy Conversion," Energies, MDPI, vol. 15(3), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chih-Lung Shen & Li-Zhong Chen & Guan-Yu Chen & Ching-Ming Yang, 2022. "Multi-Port Multi-Directional Converter with Multi-Mode Operation and Leakage Energy Recycling for Green Energy Processing," Energies, MDPI, vol. 15(15), pages 1-26, August.
    2. Mihaiță Gireadă & Dan Hulea & Nicolae Muntean & Octavian Cornea, 2023. "A Common-Ground Bidirectional Hybrid Switched-Capacitor DC–DC Converter with a High Voltage Conversion Ratio," Energies, MDPI, vol. 16(3), pages 1-25, January.
    3. Miguel Ramirez-Carrillo & Susana Ortega-Cisneros & Julio C. Rosas-Caro & Jorge Rivera & Jesus E. Valdez-Resendiz & Jonathan C. Mayo-Maldonado & Antonio Valderrabano-Gonzalez, 2022. "A Step-Up Converter with Large Voltage Gain and Low Voltage Rating on Capacitors," Energies, MDPI, vol. 15(21), pages 1-19, October.
    4. Adrian Chmielewski & Piotr Piórkowski & Krzysztof Bogdziński & Jakub Możaryn, 2023. "Application of a Bidirectional DC/DC Converter to Control the Power Distribution in the Battery–Ultracapacitor System," Energies, MDPI, vol. 16(9), pages 1-40, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuhuai Zhang & Xuezhi Wu & Ziqian Zhang & Xuejiang Zhang, 2022. "A Bidirectional DHC-LT Resonant DC-DC Converter with Research on Improved Fundamental Harmonic Analysis Considering Phase Angle of Load Impedance," Energies, MDPI, vol. 15(14), pages 1-23, July.
    2. Mihaiță Gireadă & Dan Hulea & Nicolae Muntean & Octavian Cornea, 2023. "A Common-Ground Bidirectional Hybrid Switched-Capacitor DC–DC Converter with a High Voltage Conversion Ratio," Energies, MDPI, vol. 16(3), pages 1-25, January.
    3. Chih-Lung Shen & Li-Zhong Chen & Guan-Yu Chen & Ching-Ming Yang, 2022. "Multi-Port Multi-Directional Converter with Multi-Mode Operation and Leakage Energy Recycling for Green Energy Processing," Energies, MDPI, vol. 15(15), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4583-:d:845793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.