IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4451-d842217.html
   My bibliography  Save this article

Variation Analysis Considering the Partial Parallel Connection in Aero-Engine Rotor Assembly

Author

Listed:
  • Siyi Ding

    (Institute of Artificial Intelligence, Donghua University, Shanghai 201600, China)

  • Xiaohu Zheng

    (Institute of Artificial Intelligence, Donghua University, Shanghai 201600, China)

Abstract

The rotation precision of rotors determines the efficiency and quality of the overall aero-engine, as well as its long-term and reliable operation ability. As the terminal link of aero-engine manufacturing, the assembly is the last guarantee of precision control. Rotor assembly relates to the accurate expression of the connection form and design optimization of the assembly scheme. The existing variation model cannot adequately handle the partial parallel chain problem, ignoring the bayonet circular connector between the rotor parts, and it is still deficient in multistage gyration error control. In this paper, the partial parallel connection and multistage revolving characteristics of rotors were discussed, and a novel modeling and optimizing method for a partial parallel dimension chain was proposed. On the one hand, the variation expression of the connection features for the revolving components considering the partial parallel structure was researched. Contact point-based torsors were represented, and a system for locating points was regarded as an assembly to describe the partial parallel chain. On the other hand, the variation propagation modeling and control for the stacking of the multistage revolving components was researched. A revolution joint was introduced in the unified Jacobian–Torsor model, and a novel assembly technique for concentricity control was proposed. Therefore, a unified variation analysis and control method for rotor assembly has been developed. Experimental results show that through this method, the final concentricity variation is 0.0539 mm, far less than the 0.1595 mm of the traditional model, and is closer to the true value range of 0.030–0.040 mm. Moreover, the optimum installed angles can be calculated as 3.153 rad, 6.025 rad, and 2.590 rad, to obtain the highest concentricity of 0.040 mm, which has strong practical guiding significance.

Suggested Citation

  • Siyi Ding & Xiaohu Zheng, 2022. "Variation Analysis Considering the Partial Parallel Connection in Aero-Engine Rotor Assembly," Energies, MDPI, vol. 15(12), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4451-:d:842217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4451/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4451/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingming Zhao & Xiaolong Hao & Kai Zhang & Yuanyuan Li & Guanghui Zhang, 2023. "Investigation of the Vibration Transmission Characteristics of the Aero-Engine Casing System by Rotating Force Exciter," Energies, MDPI, vol. 16(4), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4451-:d:842217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.