IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4417-d841164.html
   My bibliography  Save this article

Modeling the Process and Properties of Ash Formation during Pulverized Biomass Combustion

Author

Listed:
  • Mingzi Xu

    (School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Changdong Sheng

    (School of Energy and Environment, Southeast University, Nanjing 210096, China)

Abstract

The present work mainly developed a mathematical model based on the plug flow model and coarse fly ash particles’ fragmentation model to describe the behavior and evolution of ash formation and the influence of the biomass feeding rate and flue gas cooling rate on ash properties, which is validated by literature data. The model considers homogeneous nucleation of alkali vapors, heterogeneous condensation of vapors on newly formed particles and fly ash particles, and collision-coagulation between aerosol particles, which is also applied to numerically study and analyze the ash formation characteristics in the cases of practical boiler pulverized fuel combustion and SO 2 sulfation. The results show that the mathematical model can reasonably describe the ash formation and the influence of the biomass feeding rate and the flue gas cooling rate on the mass PSDs of PM 10 and its elements. The initial nucleation temperature and initial nucleation particle size increase with the biomass feeding rate, which is of great importance to the cooling rate on the initial nucleation number concentration and the initial nucleation particle size. Elements Na, K, and Cl are mainly concentrated in PM 1 , but rarely distributed in PM 1–10 . The condensation of Na, K, and Cl on coarse particles increases with the biomass feeding rate and decreases with the cooling rate. The ash characteristics obtained from the experiment condition with an ultra-high flue gas cooling rate and minimum biomass selected may have a large deviation from that of practical biomass combustion, and the sulfated reaction may reduce Cl corrosion rather than ash deposition.

Suggested Citation

  • Mingzi Xu & Changdong Sheng, 2022. "Modeling the Process and Properties of Ash Formation during Pulverized Biomass Combustion," Energies, MDPI, vol. 15(12), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4417-:d:841164
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4417/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yin, Chungen, 2020. "Development in biomass preparation for suspension firing towards higher biomass shares and better boiler performance and fuel rangeability," Energy, Elsevier, vol. 196(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenxiao Chu & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Maria Vicidomini & Qiuwang Wang, 2020. "Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems," Energies, MDPI, vol. 13(19), pages 1-29, October.
    2. Adeleke, Adekunle A. & Ikubanni, Peter P. & Emmanuel, Stephen S. & Fajobi, Moses O. & Nwachukwu, Praise & Adesibikan, Ademidun A. & Odusote, Jamiu K. & Adeyemi, Emmanuel O. & Abioye, Oluwaseyi M. & Ok, 2024. "A comprehensive review on the similarity and disparity of torrefied biomass and coal properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Roeland De Meulenaere & Tim Maertens & Ale Sikkema & Rune Brusletto & Tanja Barth & Julien Blondeau, 2021. "Energetic and Exergetic Performances of a Retrofitted, Large-Scale, Biomass-Fired CHP Coupled to a Steam-Explosion Biomass Upgrading Plant, a Biorefinery Process and a High-Temperature Heat Network," Energies, MDPI, vol. 14(22), pages 1-15, November.
    4. Zhu, Yiming & Su, Haining & Qiu, Tongyu & Zhai, Yingmei & Mikulčić, Hrvoje & Wang, Xuebin & Zhang, Lan & Xie, Jun & Yang, Tianhua, 2024. "Modelling of fly ash viscous deposition and slagging prediction of biomass-fired boiler," Renewable Energy, Elsevier, vol. 227(C).
    5. Joseph Oyekale & Mario Petrollese & Vittorio Tola & Giorgio Cau, 2020. "Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies," Energies, MDPI, vol. 13(18), pages 1-48, September.
    6. Guzović, Zvonimir & Duic, Neven & Piacentino, Antonio & Markovska, Natasa & Mathiesen, Brian Vad & Lund, Henrik, 2022. "Recent advances in methods, policies and technologies at sustainable energy systems development," Energy, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4417-:d:841164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.