IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4400-d840653.html
   My bibliography  Save this article

Study of Tower Clearance Safety Protection during Extreme Gust Based on Wind Turbine Monitoring Data

Author

Listed:
  • Yazhou Wang

    (College of Mechanics and Materials, Hohai University, Nanjing 211100, China
    Wind Turbine Structural Engineering Research Center of Jiangsu Province, Nanjing 211100, China)

  • Xin Cai

    (College of Mechanics and Materials, Hohai University, Nanjing 211100, China
    Wind Turbine Structural Engineering Research Center of Jiangsu Province, Nanjing 211100, China)

  • Shifa Lin

    (College of Mechanics and Materials, Hohai University, Nanjing 211100, China
    Wind Turbine Structural Engineering Research Center of Jiangsu Province, Nanjing 211100, China)

  • Bofeng Xu

    (Wind Turbine Structural Engineering Research Center of Jiangsu Province, Nanjing 211100, China
    College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Yuan Zhang

    (College of Mechanics and Materials, Hohai University, Nanjing 211100, China
    Wind Turbine Structural Engineering Research Center of Jiangsu Province, Nanjing 211100, China)

  • Saixian Bian

    (College of Mechanics and Materials, Hohai University, Nanjing 211100, China
    Wind Turbine Structural Engineering Research Center of Jiangsu Province, Nanjing 211100, China)

Abstract

Large-scale wind turbines often face the problem of tower clearance safety under extreme gust conditions. Since gust intensity is positively correlated with the change rate of the generator’s speed, a gust identification method is proposed based on wind turbine monitoring data. Furthermore, a novel tower clearance safety protection strategy is proposed, which superimposes some additional speed requirements on the basis of normal pitch rate when identifying extreme gust so as to alleviate the dynamic response of the wind turbine. Simulations and comparison of a 5 MW wind turbine, before and after applying the new strategy, showed that the new strategy can induce an increase in pitch angle for the wind turbine and, simultaneously, avoids the emergency stop caused by the generator’s overspeed. Meanwhile, when the new strategy is adopted, the blade tip’s deformation and the load on the top of the tower are reduced by 19.9% and 52.2%, respectively. Therefore, the proposed strategy can not only protect the safety of the wind turbine but it also reduces costs.

Suggested Citation

  • Yazhou Wang & Xin Cai & Shifa Lin & Bofeng Xu & Yuan Zhang & Saixian Bian, 2022. "Study of Tower Clearance Safety Protection during Extreme Gust Based on Wind Turbine Monitoring Data," Energies, MDPI, vol. 15(12), pages 1-11, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4400-:d:840653
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    2. Cortina, G. & Calaf, M., 2017. "Turbulence upstream of wind turbines: A large-eddy simulation approach to investigate the use of wind lidars," Renewable Energy, Elsevier, vol. 105(C), pages 354-365.
    3. Göçmen, Tuhfe & Giebel, Gregor, 2016. "Estimation of turbulence intensity using rotor effective wind speed in Lillgrund and Horns Rev-I offshore wind farms," Renewable Energy, Elsevier, vol. 99(C), pages 524-532.
    4. Kumer, Valerie-M. & Reuder, Joachim & Dorninger, Manfred & Zauner, Rudolf & Grubišić, Vanda, 2016. "Turbulent kinetic energy estimates from profiling wind LiDAR measurements and their potential for wind energy applications," Renewable Energy, Elsevier, vol. 99(C), pages 898-910.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lafarge, Barbara & Grondel, Sébastien & Delebarre, Christophe & Curea, Octavian & Richard, Claude, 2021. "Linear electromagnetic energy harvester system embedded on a vehicle suspension: From modeling to performance analysis," Energy, Elsevier, vol. 225(C).
    2. Hamid Chojaa & Aziz Derouich & Mohammed Taoussi & Seif Eddine Chehaidia & Othmane Zamzoum & Mohamed I. Mosaad & Ayman Alhejji & Mourad Yessef, 2022. "Nonlinear Control Strategies for Enhancing the Performance of DFIG-Based WECS under a Real Wind Profile," Energies, MDPI, vol. 15(18), pages 1-23, September.
    3. Fei Zhao & Yihan Gao & Tengyuan Wang & Jinsha Yuan & Xiaoxia Gao, 2020. "Experimental Study on Wake Evolution of a 1.5 MW Wind Turbine in a Complex Terrain Wind Farm Based on LiDAR Measurements," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    4. Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.
    5. Souaiby, Marwa & Porté-Agel, Fernando, 2024. "An improved analytical framework for flow prediction inside and downstream of wind farms," Renewable Energy, Elsevier, vol. 225(C).
    6. Tian, Linlin & Song, Yilei & Wang, Zhenming & Zhao, Ning & Zhu, Chunling & Lu, Xiyun, 2024. "Predictive capability of an improved AD/RANS method for multiple wind turbines and wind farm wakes," Energy, Elsevier, vol. 297(C).
    7. Arshdeep Singh & Shimi Sudha Letha, 2019. "Emerging energy sources for electric vehicle charging station," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2043-2082, October.
    8. Tai Li & Yanbo Wang & Sunan Sun & Huimin Qian & Leqiu Wang & Lei Wang & Yanxia Shen & Zhicheng Ji, 2023. "Fuzzy Active Disturbance Rejection-Based Virtual Inertia Control Strategy for Wind Farms," Energies, MDPI, vol. 16(10), pages 1-16, May.
    9. Li, Li & Wang, Bing & Ge, Mingwei & Huang, Zhi & Li, Xintao & Liu, Yongqian, 2023. "A novel superposition method for streamwise turbulence intensity of wind-turbine wakes," Energy, Elsevier, vol. 276(C).
    10. Lin, Zhongwei & Chen, Zhenyu & Liu, Jizhen & Wu, Qiuwei, 2019. "Coordinated mechanical loads and power optimization of wind energy conversion systems with variable-weight model predictive control strategy," Applied Energy, Elsevier, vol. 236(C), pages 307-317.
    11. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    12. Fathabadi, Hassan, 2016. "Novel highly accurate universal maximum power point tracker for maximum power extraction from hybrid fuel cell/photovoltaic/wind power generation systems," Energy, Elsevier, vol. 116(P1), pages 402-416.
    13. Öztürk, Buğrahan & Hassanein, Abdelrahman & Akpolat, M Tuğrul & Abdulrahim, Anas & Perçin, Mustafa & Uzol, Oğuz, 2023. "On the wake characteristics of a model wind turbine and a porous disc: Effects of freestream turbulence intensity," Renewable Energy, Elsevier, vol. 212(C), pages 238-250.
    14. Pérez Albornoz, C. & Escalante Soberanis, M.A. & Ramírez Rivera, V. & Rivero, M., 2022. "Review of atmospheric stability estimations for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    15. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    16. Youssef, Abdel-Raheem & Mousa, Hossam H.H. & Mohamed, Essam E.M., 2020. "Development of self-adaptive P&O MPPT algorithm for wind generation systems with concentrated search area," Renewable Energy, Elsevier, vol. 154(C), pages 875-893.
    17. Dongran Song & Jian Yang & Mei Su & Anfeng Liu & Yao Liu & Young Hoon Joo, 2017. "A Comparison Study between Two MPPT Control Methods for a Large Variable-Speed Wind Turbine under Different Wind Speed Characteristics," Energies, MDPI, vol. 10(5), pages 1-18, May.
    18. Ganesh Mayilsamy & Balasubramani Natesan & Young Hoon Joo & Seong Ryong Lee, 2022. "Fast Terminal Synergetic Control of PMVG-Based Wind Energy Conversion System for Enhancing the Power Extraction Efficiency," Energies, MDPI, vol. 15(8), pages 1-22, April.
    19. Matheus Schramm Dall’Asta & Telles Brunelli Lazzarin, 2024. "A Review of Fast Power-Reserve Control Techniques in Grid-Connected Wind Energy Conversion Systems," Energies, MDPI, vol. 17(2), pages 1-29, January.
    20. Fathabadi, Hassan, 2016. "Novel high-efficient unified maximum power point tracking controller for hybrid fuel cell/wind systems," Applied Energy, Elsevier, vol. 183(C), pages 1498-1510.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4400-:d:840653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.