Author
Listed:
- Xiaoyang Tian
(Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China)
- Kwok Tong Chau
(Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China)
- Wei Liu
(Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China)
Abstract
This paper presents a newly-designed optimal current algorithm for high-temperature superconductor (HTS)-based multi-input wireless power transfer (WPT) systems. In this way, both high controllability and lower AC losses can be achieved in the proposed systems, and they are especially superior for long-range and long-time operations. Simplified AC loss modeling for HTS windings is developed for the designed transmitter coils. The accordant optimal current vector is derived and analyzed in order to achieve the highest output power and the lowest primary AC losses. With the proper current control of multiple transmitters and the use of a designed HTS coupler, the system controllability can be greatly improved compared with conventional WPT systems. Based on the information on the impedance characteristics on the primary side, the magnetic field generated by different transmitters can be maximized at the target position. Thus, the maximum output power tracking can be realized with a relatively long transmission distance and a low coupling coefficient. Both active and passive solutions are designed and presented to deal with the cross-coupling issue in multi-input WPT systems. For numerical validation, a practical prototype of the HTS couplers is fabricated. An experimental platform is established with a liquid nitrogen cooling system. The test results further validate the feasibility and the high controllability of the proposed system.
Suggested Citation
Xiaoyang Tian & Kwok Tong Chau & Wei Liu, 2022.
"Design and Analysis of Optimal Current Vector for HTS-Based Multi-Input Wireless Power Transfer Systems,"
Energies, MDPI, vol. 15(12), pages 1-13, June.
Handle:
RePEc:gam:jeners:v:15:y:2022:i:12:p:4337-:d:838326
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4337-:d:838326. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.