IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4300-d836887.html
   My bibliography  Save this article

Unified Design Principles of Inductive Power Transfer Systems for Multi-Load Applications

Author

Listed:
  • Jiantao Zhang

    (School of Electrical Engineering & Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Ying Liu

    (School of Electrical Engineering & Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Chunbo Zhu

    (School of Electrical Engineering & Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Ching Chuen Chan

    (School of Electrical Engineering & Automation, Harbin Institute of Technology, Harbin 150001, China)

Abstract

In the design of inductive power transfer (IPT) systems for multi-load applications, the versatility of the coupling structure and the choice of parameter values are crucial due to the diversity of load appliance types and operating conditions. In this paper, based on the features of various coupling structures, the equivalent circuit models of four topologies, namely single-input single-output (SISO), single-input multiple-output (SIMO), multiple-input single-output (MISO) and multiple-input multiple-output (MIMO), are established, from which general transfer characteristics are obtained and analyzed. Based on the series–series (S/S) compensation topology, a set of design principles for IPT circuits satisfying various output requirements in a multi-load environment is presented. Moreover, a control strategy to address the impedance matching issue and to facilitate communication between the primary and secondary sides is proposed. The proposed control strategy is experimentally validated.

Suggested Citation

  • Jiantao Zhang & Ying Liu & Chunbo Zhu & Ching Chuen Chan, 2022. "Unified Design Principles of Inductive Power Transfer Systems for Multi-Load Applications," Energies, MDPI, vol. 15(12), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4300-:d:836887
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4300/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4300/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhen Zhang & Ruilin Tong & Zhenyan Liang & Chunhua Liu & Jiang Wang, 2018. "Analysis and Control of Optimal Power Distribution for Multi-Objective Wireless Charging Systems," Energies, MDPI, vol. 11(7), pages 1-16, July.
    2. Yanting Luo & Yongmin Yang & Xisen Wen & Ming Cheng, 2018. "Enhancing the Robustness of the Wireless Power Transfer System to Uncertain Parameter Variations Using an Interval-Based Uncertain Optimization Method," Energies, MDPI, vol. 11(8), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linlin Tan & Wenxuan Zhao & Minghao Ju & Han Liu & Xueliang Huang, 2019. "Research on an EV Dynamic Wireless Charging Control Method Adapting to Speed Change," Energies, MDPI, vol. 12(11), pages 1-13, June.
    2. Ying Liu & Jiantao Zhang & Chunbo Zhu & Ching Chuen Chan, 2022. "A Study on the Safety Analysis of an Inductive Power Transfer System for Kitchen Appliances," Energies, MDPI, vol. 15(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4300-:d:836887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.