IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4297-d836883.html
   My bibliography  Save this article

Foamed Eco-Geopolymer Modified by Perlite and Cellulose as a Construction Material for Energy-Efficient Buildings

Author

Listed:
  • Izabela Kurek

    (Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland)

  • Emilia Florek

    (Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland)

  • Weronika Gozdur

    (Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland)

  • Celina Ziejewska

    (Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland)

  • Joanna Marczyk

    (Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland)

  • Michał Łach

    (Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland)

  • Kinga Korniejenko

    (Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland)

  • Patrycja Duży

    (Faculty of Civil Engineering, Chair of Building Materials Engineering, Cracow University of Technology, 31-155 Kraków, Poland)

  • Marta Choińska

    (Research Institute in Civil and Mechanical Engineering GeM, UMR CNRS 6183, Nantes University—IUT Saint-Nazaire, 44035 Nantes, France)

  • Magdalena Szechyńska-Hebda

    (Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland)

  • Marek Hebda

    (Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland)

Abstract

Irreversible climate change, including atmosphere temperature extremes, is one of the most important issues of the present time. In this context, the construction industry requires solutions for increasing the energy efficiency of buildings through feedback between temperature adjustment inside buildings and better isolation of the external parts of buildings. Newly developed thermal insulation materials play an important role in this strategy. This paper presents the foamed geopolymer based on metakaolin that can be used as a modern facade material. In order to further improve its thermal insulation properties, the composition of geopolymer was modified with organic substances, i.e., perlite and cellulose fibers (30% and 50% of the volume). The thermal conductivity and insulation properties, density, mineral phases, absorbability, and compressive strength were improved for composite materials. It has been shown that the final properties of the foamed geopolymer can be controlled to a great extent by modifications, and the final properties determine its applicability.

Suggested Citation

  • Izabela Kurek & Emilia Florek & Weronika Gozdur & Celina Ziejewska & Joanna Marczyk & Michał Łach & Kinga Korniejenko & Patrycja Duży & Marta Choińska & Magdalena Szechyńska-Hebda & Marek Hebda, 2022. "Foamed Eco-Geopolymer Modified by Perlite and Cellulose as a Construction Material for Energy-Efficient Buildings," Energies, MDPI, vol. 15(12), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4297-:d:836883
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4297/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4297/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aydin, Erdal & Brounen, Dirk, 2019. "The impact of policy on residential energy consumption," Energy, Elsevier, vol. 169(C), pages 115-129.
    2. Wu, X.D. & Guo, J.L. & Ji, Xi & Chen, G.Q., 2019. "Energy use in world economy from household-consumption-based perspective," Energy Policy, Elsevier, vol. 127(C), pages 287-298.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiucheng Li & Jiang Hu & Bolin Yu, 2021. "Spatiotemporal Patterns and Influencing Mechanism of Urban Residential Energy Consumption in China," Energies, MDPI, vol. 14(13), pages 1-17, June.
    2. Michael O. Dioha & Nnaemeka Vincent Emodi, 2019. "Investigating the Impacts of Energy Access Scenarios in the Nigerian Household Sector by 2030," Resources, MDPI, vol. 8(3), pages 1-18, July.
    3. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    4. Xiaofeng Lv & Kun Lin & Lingshan Chen & Yongzhong Zhang, 2022. "Does Retirement Affect Household Energy Consumption Structure? Evidence from a Regression Discontinuity Design," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
    5. Qiuyun Zhu & Xiaoyang Zhou & Aijun Liu & Chong Gao & Lei Xu & Fan Zhao & Ding Zhang & Benjamin Lev, 2022. "Equilibrium Optimization with Multi-Energy-Efficiency-Grade Products: Government and Market Perspective," Energies, MDPI, vol. 15(19), pages 1-23, October.
    6. Ji, Xi & Liu, Yifang & Wu, Guowei & Su, Pinyi & Ye, Zhen & Feng, Kuishuang, 2022. "Global value chain participation and trade-induced energy inequality," Energy Economics, Elsevier, vol. 112(C).
    7. Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).
    8. Shen, Meng & Li, Xiang & Lu, Yujie & Cui, Qingbin & Wei, Yi-Ming, 2021. "Personality-based normative feedback intervention for energy conservation," Energy Economics, Elsevier, vol. 104(C).
    9. Besagni, Giorgio & Borgarello, Marco & Premoli Vilà, Lidia & Najafi, Behzad & Rinaldi, Fabio, 2020. "MOIRAE – bottom-up MOdel to compute the energy consumption of the Italian REsidential sector: Model design, validation and evaluation of electrification pathways," Energy, Elsevier, vol. 211(C).
    10. Zhang, Wen-Yi & Zheng, Boshen & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2022. "Peer-to-peer transactive mechanism for residential shared energy storage," Energy, Elsevier, vol. 246(C).
    11. Wadim Strielkowski & Irina Firsova & Inna Lukashenko & Jurgita Raudeliūnienė & Manuela Tvaronavičienė, 2021. "Effective Management of Energy Consumption during the COVID-19 Pandemic: The Role of ICT Solutions," Energies, MDPI, vol. 14(4), pages 1-17, February.
    12. Bertoldi, Paolo & Mosconi, Rocco, 2020. "Do energy efficiency policies save energy? A new approach based on energy policy indicators (in the EU Member States)," Energy Policy, Elsevier, vol. 139(C).
    13. Usubiaga-Liaño, Arkaitz & Arto, Iñaki & Acosta-Fernández, José, 2021. "Double accounting in energy footprint and related assessments: How common is it and what are the consequences?," Energy, Elsevier, vol. 222(C).
    14. Zhang, Wenyi & Wei, Wei & Chen, Laijun & Zheng, Boshen & Mei, Shengwei, 2020. "Service pricing and load dispatch of residential shared energy storage unit," Energy, Elsevier, vol. 202(C).
    15. Mejia, Mario A. & Melo, Joel D. & Zambrano-Asanza, Sergio & Padilha-Feltrin, Antonio, 2020. "Spatial-temporal growth model to estimate the adoption of new end-use electric technologies encouraged by energy-efficiency programs," Energy, Elsevier, vol. 191(C).
    16. Francesco Mancini & Gianluigi Lo Basso & Livio de Santoli, 2019. "Energy Use in Residential Buildings: Impact of Building Automation Control Systems on Energy Performance and Flexibility," Energies, MDPI, vol. 12(15), pages 1-21, July.
    17. Li, Y.L. & Chen, B. & Chen, G.Q., 2020. "Carbon network embodied in international trade: Global structural evolution and its policy implications," Energy Policy, Elsevier, vol. 139(C).
    18. Almulhim, Abdulaziz I., 2022. "Understanding public awareness and attitudes toward renewable energy resources in Saudi Arabia," Renewable Energy, Elsevier, vol. 192(C), pages 572-582.
    19. Nepal, Rabindra & Musibau, Hammed Oluwaseyi & Jamasb, Tooraj, 2021. "Energy consumption as an indicator of energy efficiency and emissions in the European Union: A GMM based quantile regression approach," Energy Policy, Elsevier, vol. 158(C).
    20. Marcela Taušová & Lucia Domaracká & Katarína Čulková & Peter Tauš & Pavol Kaňuch, 2024. "Development of Energy Poverty and Its Solutions through the Use of Renewables: The EU Case with a Focus on Slovakia," Energies, MDPI, vol. 17(15), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4297-:d:836883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.