IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4050-d829003.html
   My bibliography  Save this article

Production Simulation of Oil Reservoirs with Complex Fracture Network Using Numerical Simulation

Author

Listed:
  • Xijun Ke

    (School of Sciences, Civil Aviation Flight University of China, Deyang 618307, China)

  • Yunxiang Zhao

    (School of Sciences, Civil Aviation Flight University of China, Deyang 618307, China)

  • Jiaqi Li

    (Engineering Technology Research Institute, Xinjiang Oilfield Company, Kelamayi 834000, China)

  • Zixi Guo

    (School of Sciences, Southwest Petroleum University, Chengdu 610500, China)

  • Yunwei Kang

    (School of Sciences, Southwest Petroleum University, Chengdu 610500, China)

Abstract

This paper established a numerical simulation model to analyze the pressure transient and rate transient behaviors in reservoir with complex fracture network. Firstly, the fractures are introduced into the coordinate system through the position, angle, and length. Secondly, a mathematical model is established by using unstable seepage model. Thirdly, the central difference method was used to solve the model and local grid refinement method is introduced to describe the network fractures. Finally, we compared the results obtained from this paper’s model with the production data. The results show acceptable and reasonable matches for typical well. Meanwhile, the sensitivity of two properties is discussed. The model solution is verified with an analytical method thoroughly. The novelty of this paper is to introduce each fracture in fracture network into the coordinate system. Then, the grid refinement is achieved according to the fracture information. The presented new model simplifies the analysis of the pressure transient and rate transient of the reservoir with complex fracture network, and it is more efficient than the conventional numerical method. Compared with the analytical methods, the new model describes the fractures system in more detail. However, the new model treats fractures as reservoirs with higher permeability in the central difference method, which is simpler and rougher than traditional numerical methods.

Suggested Citation

  • Xijun Ke & Yunxiang Zhao & Jiaqi Li & Zixi Guo & Yunwei Kang, 2022. "Production Simulation of Oil Reservoirs with Complex Fracture Network Using Numerical Simulation," Energies, MDPI, vol. 15(11), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4050-:d:829003
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4050/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4050/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergey Krivoshchekov & Alexander Kochnev & Nikita Kozyrev & Evgeny Ozhgibesov, 2022. "Factoring Permeability Anisotropy in Complex Carbonate Reservoirs in Selecting an Optimum Field Development Strategy," Energies, MDPI, vol. 15(23), pages 1-12, November.
    2. Yufeng Gong & Shuo Zhai & Yuqiang Zha & Tonghao Xu & Shu Liu & Bo Kang & Bolin Zhang, 2022. "Numerical Simulation of Embedded Discrete-Fracture Seepage in Deep Carbonate Gas Reservoir," Energies, MDPI, vol. 15(19), pages 1-17, October.
    3. Yi Zou & Desheng Zhou & Xianlin Ma & Yenan Jie & Xiaoxiang Wang & Hongxia Liu, 2023. "Optimization of Mathematical Function-Shaped Fracture Distribution Patterns for Multi-Stage Fractured Horizontal Wells," Energies, MDPI, vol. 16(13), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4050-:d:829003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.