IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4014-d827672.html
   My bibliography  Save this article

Polyimide Copolymers and Nanocomposites: A Review of the Synergistic Effects of the Constituents on the Fire-Retardancy Behavior

Author

Listed:
  • Shengdong Xiao

    (Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA)

  • Caroline Akinyi

    (Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA)

  • Jimmy Longun

    (Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA)

  • Jude O. Iroh

    (Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA)

Abstract

Carbon-based polymer can catch fire when used as cathode material in batteries and supercapacitors, due to short circuiting. Polyimide is known to exhibit flame retardancy by forming char layer in condensed phase. The high char yield of polyimide is attributed to its aromatic nature and the existence of a donor–acceptor complex in its backbone. Fabrication of hybrid polyimide material can provide better protection against fire based on multiple fire-retardancy mechanisms. Nanocomposites generally show a significant enhancement in mechanical, electrical, and thermal properties. Nanoparticles, such as graphene and carbon nanotubes, can enhance flame retardancy in condensed phase by forming a dense char layer. Silicone-based materials can also provide fire retardancy in condensed phase by a similar mechanism as polyimide. However, some inorganic fire retardants, such as phosphazene, can enhance flame retardancy in gaseous phase by releasing flame inhibiting radicals. The flame inhibiting radicals generated by phosphazene are released into the gaseous phase during combustion. A hybrid system constituted of polyimide, silicone-based additives, and phosphazene would provide significant improvement in flame retardancy in both the condensed phase and gas phase. In this review, several flame-retardant polyimide-based systems are described. This review which focuses on the various combinations of polyimide and other candidate fire-retardant materials would shed light on the nature of an effective multifunctional flame-retardant hybrid materials.

Suggested Citation

  • Shengdong Xiao & Caroline Akinyi & Jimmy Longun & Jude O. Iroh, 2022. "Polyimide Copolymers and Nanocomposites: A Review of the Synergistic Effects of the Constituents on the Fire-Retardancy Behavior," Energies, MDPI, vol. 15(11), pages 1-29, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4014-:d:827672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4014/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4014/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Caroline J. Akinyi & Jude O. Iroh, 2021. "Heat of Decomposition and Fire Retardant Behavior of Polyimide-Graphene Nanocomposites," Energies, MDPI, vol. 14(13), pages 1-12, July.
    2. Tianyu Zhang & Weitao Li & Kai Huang & Huazhang Guo & Zhengyuan Li & Yanbo Fang & Ram Manohar Yadav & Vesselin Shanov & Pulickel M. Ajayan & Liang Wang & Cheng Lian & Jingjie Wu, 2021. "Regulation of functional groups on graphene quantum dots directs selective CO2 to CH4 conversion," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Patricia Okafor & Jude Iroh, 2021. "Electrochemical Properties of Porous Graphene/Polyimide-Nickel Oxide Hybrid Composite Electrode Material," Energies, MDPI, vol. 14(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruchinda Gooneratne & Jude O. Iroh, 2022. "Polypyrrole Modified Carbon Nanotube/Polyimide Electrode Materials for Supercapacitors and Lithium-ion Batteries," Energies, MDPI, vol. 15(24), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jongyoun Kim & Taemin Lee & Hyun Dong Jung & Minkyoung Kim & Jungsu Eo & Byeongjae Kang & Hyeonwoo Jung & Jaehyoung Park & Daewon Bae & Yujin Lee & Sojung Park & Wooyul Kim & Seoin Back & Youngu Lee &, 2024. "Vitamin C-induced CO2 capture enables high-rate ethylene production in CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Huazhang Guo & Yuhao Lu & Zhendong Lei & Hong Bao & Mingwan Zhang & Zeming Wang & Cuntai Guan & Bijun Tang & Zheng Liu & Liang Wang, 2024. "Machine learning-guided realization of full-color high-quantum-yield carbon quantum dots," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yu Yang & Cheng Zhang & Chengyi Zhang & Yaohui Shi & Jun Li & Bernt Johannessen & Yongxiang Liang & Shuzhen Zhang & Qiang Song & Haowei Zhang & Jialei Huang & Jingwen Ke & Lei Zhang & Qingqing Song & , 2024. "Ligand-tuning copper in coordination polymers for efficient electrochemical C–C coupling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4014-:d:827672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.