IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p3955-d825480.html
   My bibliography  Save this article

An Acoustic Fault Detection and Isolation System for Multirotor UAV

Author

Listed:
  • Adam Bondyra

    (Faculty of Automatic Control, Robotics and Electrical Engineering, Institute of Robotics and Machine Intelligence, Poznan University of Technology, ul. Piotrowo 3a, 60-965 Poznan, Poland)

  • Marek Kołodziejczak

    (Faculty of Automatic Control, Robotics and Electrical Engineering, Institute of Robotics and Machine Intelligence, Poznan University of Technology, ul. Piotrowo 3a, 60-965 Poznan, Poland)

  • Radosław Kulikowski

    (Faculty of Automatic Control, Robotics and Electrical Engineering, Institute of Robotics and Machine Intelligence, Poznan University of Technology, ul. Piotrowo 3a, 60-965 Poznan, Poland)

  • Wojciech Giernacki

    (Faculty of Automatic Control, Robotics and Electrical Engineering, Institute of Robotics and Machine Intelligence, Poznan University of Technology, ul. Piotrowo 3a, 60-965 Poznan, Poland)

Abstract

With the rising popularity of unmanned aerial vehicles (UAVs) and increasing variety of their applications, the task of providing reliable and robust control systems becomes significant. An active fault-tolerant control (FTC) scheme requires an effective fault detection and isolation (FDI) algorithm to provide information about the fault’s occurrence and its location. This work aims to present a prototype of a diagnostic system intended to recognize and identify broken blades of rotary wing UAVs. The solution is based on an analysis of acoustic emission recorded with an onboard microphone array paired with a lightweight yet powerful single-board computer. The standalone hardware of the FDI system was utilized to collect a wide and publicly available dataset of recordings in real-world experiments. The detection algorithm itself is a data-driven approach that makes use of an artificial neural network to classify characteristic features of acoustic signals. Fault signature is based on Mel Frequency Spectrum Coefficients. Furthermore, in the paper an extensive evaluation of the model’s parameters was performed. As a result, a highly accurate fault classifier was developed. The best models allow not only a detection of fault occurrence, but thanks to multichannel data provided with a microphone array, the location of the impaired rotor is reported, as well.

Suggested Citation

  • Adam Bondyra & Marek Kołodziejczak & Radosław Kulikowski & Wojciech Giernacki, 2022. "An Acoustic Fault Detection and Isolation System for Multirotor UAV," Energies, MDPI, vol. 15(11), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3955-:d:825480
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/3955/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/3955/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qingqing Zhai & Zhi-Sheng Ye, 2020. "How reliable should military UAVs be?," IISE Transactions, Taylor & Francis Journals, vol. 52(11), pages 1234-1245, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Louro & Luís Ferreira, 2022. "Estimation of Underground MV Network Failure Types by Applying Machine Learning Methods to Indirect Observations," Energies, MDPI, vol. 15(17), pages 1-15, August.
    2. Wojciech Giernacki, 2022. "Minimum Energy Control of Quadrotor UAV: Synthesis and Performance Analysis of Control System with Neurobiologically Inspired Intelligent Controller (BELBIC)," Energies, MDPI, vol. 15(20), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Lujie & Yang, Jun, 2023. "A dynamic mission abort policy for the swarm executing missions and its solution method by tailored deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Zhao, Xian & Lv, Zuheng & Qiu, Qingan & Wu, Yaguang, 2023. "Designing two-level rescue depot location and dynamic rescue policies for unmanned vehicles," Reliability Engineering and System Safety, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3955-:d:825480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.