Author
Listed:
- Wei Wang
(School of Earth Resources, China University of Geosciences, Wuhan 430074, China
Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China)
- Xianghua Yang
(School of Earth Resources, China University of Geosciences, Wuhan 430074, China
Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China)
- Hongtao Zhu
(School of Earth Resources, China University of Geosciences, Wuhan 430074, China
Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China)
- Li Huang
(School of Earth Resources, China University of Geosciences, Wuhan 430074, China
Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China)
Abstract
The discovery of the BZ19-6 large-scale condensate gas field illustrates the great potential of the sandy conglomerate reservoirs in the Bohai Bay Basin. However, the stratigraphic correlation of the sandy conglomerate sequence in northern Huanghekou Sag remains a challenge due to the lack of syn-depositional volcanic layers and biostratigraphic constraints. The challenge limits understanding the regional strata distribution and further exploration deployment. In this study, we conducted in situ U-Pb dating of vein calcite and detrital zircons of the sandy conglomerate samples from borehole BZ26-A. The vein calcite age and the youngest age of detrital zircons provide the upper and lower bounds of the depositional age, respectively. We also correlated the samples with those from well-understood strata through a comparison of XRD mineral components. The absolute age of 47.0 Ma of the vein calcite and the youngest detrital zircon age of 103.5 Ma suggest the sedimentary sequence is supposed to be referred to as the Kongdian Formation (65–50.5 Ma). The XRD data and petrological analysis suggest that the lithostratigraphy of the Kongdian Formation in Huanghekou Sag could be divided into at least three members, with Member 3 consisting of red sediment deposited in a hot and dry climate; Member 2 and Member 1 deposited as fan delta with major parent rock of Mesozoic volcanic rocks and Precambrian meta-granitoid, respectively. Member 1 shows significant potential for energy exploration due to high brittle mineral components and fracture development.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3880-:d:823262. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.