IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3809-d821115.html
   My bibliography  Save this article

Mitigation of Low-Frequency Oscillation in Power Systems through Optimal Design of Power System Stabilizer Employing ALO

Author

Listed:
  • Endeshaw Solomon Bayu

    (Department of Electrical and Computer Engineering, Hawassa University, Hawassa P.O. Box 05, Ethiopia)

  • Baseem Khan

    (Department of Electrical and Computer Engineering, Hawassa University, Hawassa P.O. Box 05, Ethiopia)

  • Zaid M. Ali

    (College of Engineering at Wadi Addawasir, Prince Sattam Bin Abdulaziz University, Wadi Addawasir 11991, Saudi Arabia
    Electrical Engineering Deptartment, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Zuhair Muhammed Alaas

    (Electrical Engineering Department, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia)

  • Om Prakash Mahela

    (Power System Planning Division, Rajasthan Rajya Vidyut Prasaran Nigam Ltd., Jaipur 302005, India)

Abstract

Low-frequency oscillations are an inevitable phenomenon of a power system. This paper proposes an Ant lion optimization approach to optimize the dual-input power system stabilizer (PSS2B) parameters to enhance the transfer capability of the 400 kV line in the North-West region of the Ethiopian electric network by the damping of low-frequency oscillation. Double-input Power system stabilizers (PSSs) are currently used in power systems to damp out low-frequency oscillations. The gained minimum damping ratio and eigenvalue results of the proposed Ant lion algorithm (ALO) approach are compared with the existing conventional system to get better efficiency at various loading conditions. Additionally, the proposed Ant lion optimization approach requires minimal time to estimate the key parameters of the power oscillation damper (POD). Consequently, the average time taken to optimally size the parameters of the PSS controller was 14.6 s, which is pretty small and indicates real-time implementation of an ALO developed model. The nonlinear equations that represent the system have been linearized and then placed in state-space form in order to study and analyze the dynamic performance of the system by damping out low-frequency oscillation problems. Finally, conventional fixed-gain PSS improves the maximum overshoot by 5.2% and settling time by 51.4%, but the proposed optimally sized PSS employed with the ALO method had improved the maximum overshoot by 16.86% and settling time by 78.7%.

Suggested Citation

  • Endeshaw Solomon Bayu & Baseem Khan & Zaid M. Ali & Zuhair Muhammed Alaas & Om Prakash Mahela, 2022. "Mitigation of Low-Frequency Oscillation in Power Systems through Optimal Design of Power System Stabilizer Employing ALO," Energies, MDPI, vol. 15(10), pages 1-29, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3809-:d:821115
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3809/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3809/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Majid Gulzar & Sadia Murawwat & Daud Sibtain & Kamal Shahid & Imran Javed & Yonghao Gui, 2022. "Modified Cascaded Controller Design Constructed on Fractional Operator ‘β’ to Mitigate Frequency Fluctuations for Sustainable Operation of Power Systems," Energies, MDPI, vol. 15(20), pages 1-17, October.
    2. Nader M. A. Ibrahim & Hossam E. A. Talaat & Abdullah M. Shaheen & Bassam A. Hemade, 2023. "Optimization of Power System Stabilizers Using Proportional-Integral-Derivative Controller-Based Antlion Algorithm: Experimental Validation via Electronics Environment," Sustainability, MDPI, vol. 15(11), pages 1-31, June.
    3. Ikram Boucetta & Djemai Naimi & Ahmed Salhi & Saleh Abujarad & Laid Zellouma, 2022. "Power System Stability Enhancement Using a Novel Hybrid Algorithm Based on the Water Cycle Moth-Flame Optimization," Energies, MDPI, vol. 15(14), pages 1-17, July.
    4. Endeshaw Solomon & Baseem Khan & Ilyes Boulkaibet & Bilel Neji & Nadhira Khezami & Ahmed Ali & Om Prakash Mahela & Alina Eugenia Pascual Barrera, 2023. "Mitigating Low-Frequency Oscillations and Enhancing the Dynamic Stability of Power System Using Optimal Coordination of Power System Stabilizer and Unified Power Flow Controller," Sustainability, MDPI, vol. 15(8), pages 1-29, April.
    5. Aliyu Sabo & Theophilus Ebuka Odoh & Hossien Shahinzadeh & Zahra Azimi & Majid Moazzami, 2023. "Implementing Optimization Techniques in PSS Design for Multi-Machine Smart Power Systems: A Comparative Study," Energies, MDPI, vol. 16(5), pages 1-25, March.
    6. Tswa-wen Pierre-Patrick Banga-Banga & Carl Kriger & Yohan Darcy Mfoumboulou, 2022. "Decentralized Model-Reference Adaptive Control Based Algorithm for Power Systems Inter-Area Oscillation Damping," Energies, MDPI, vol. 15(22), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3809-:d:821115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.