IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3800-d820959.html
   My bibliography  Save this article

Fractional-Order PID Controllers for Temperature Control: A Review

Author

Listed:
  • Adeel Ahmad Jamil

    (Ph.D. Program in Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan)

  • Wen Fu Tu

    (Department of Marine Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80543, Taiwan)

  • Syed Wajhat Ali

    (Electrical Engineering Department, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan)

  • Yacine Terriche

    (Center for Research on Microgrids, AAU Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Josep M. Guerrero

    (Center for Research on Microgrids, AAU Energy, Aalborg University, 9220 Aalborg, Denmark)

Abstract

Fractional-order proportional integral derivative (FOPID) controllers are becoming increasingly popular for various industrial applications due to the advantages they can offer. Among these applications, heating and temperature control systems are receiving significant attention, applying FOPID controllers to achieve better performance and robustness, more stability and flexibility, and faster response. Moreover, with several advantages of using FOPID controllers, the improvement in heating systems and temperature control systems is exceptional. Heating systems are characterized by external disturbance, model uncertainty, non-linearity, and control inaccuracy, which directly affect performance. Temperature control systems are used in industry, households, and many types of equipment. In this paper, fractional-order proportional integral derivative controllers are discussed in the context of controlling the temperature in ambulances, induction heating systems, control of bioreactors, and the improvement achieved by temperature control systems. Moreover, a comparison of conventional and FOPID controllers is also highlighted to show the improvement in production, quality, and accuracy that can be achieved by using such controllers. A composite analysis of the use of such controllers, especially for temperature control systems, is presented. In addition, some hidden and unhighlighted points concerning FOPID controllers are investigated thoroughly, including the most relevant publications.

Suggested Citation

  • Adeel Ahmad Jamil & Wen Fu Tu & Syed Wajhat Ali & Yacine Terriche & Josep M. Guerrero, 2022. "Fractional-Order PID Controllers for Temperature Control: A Review," Energies, MDPI, vol. 15(10), pages 1-28, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3800-:d:820959
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3800/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3800/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pranta Das & Shuvra Prokash Biswas & Sudipto Mondal & Md Rabiul Islam, 2023. "Frequency Fluctuation Mitigation in a Single-Area Power System Using LQR-Based Proportional Damping Compensator," Energies, MDPI, vol. 16(12), pages 1-18, June.
    2. J. Alberto Conejero & Jonathan Franceschi & Enric Picó-Marco, 2022. "Fractional vs. Ordinary Control Systems: What Does the Fractional Derivative Provide?," Mathematics, MDPI, vol. 10(15), pages 1-18, August.
    3. Ikram Boucetta & Djemai Naimi & Ahmed Salhi & Saleh Abujarad & Laid Zellouma, 2022. "Power System Stability Enhancement Using a Novel Hybrid Algorithm Based on the Water Cycle Moth-Flame Optimization," Energies, MDPI, vol. 15(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3800-:d:820959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.