IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3772-d820214.html
   My bibliography  Save this article

SiC and FeCrAl as Potential Cladding Materials for APR-1400 Neutronic Analysis

Author

Listed:
  • Mohammad Alrwashdeh

    (Emirates Nuclear Technology Center (ENTC), Department of Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates)

  • Saeed A. Alameri

    (Emirates Nuclear Technology Center (ENTC), Department of Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates)

Abstract

The aim of this study is to investigate the potential improvement of accident-tolerant fuels in pressurized water reactors for replacing existing reference zircaloy (Zr) fuel-cladding systems. Three main strategies for improving accident-tolerant fuels are investigated: enhancement of the present state-of-the-art zirconium fuel-cladding system to improve oxidation resistance, replacement of the current referenced fuel-cladding system material with an alternative high-performance oxidation-resistant cladding, and replacement of the current fuel with alternative fuel forms. This study focuses on a preliminary analysis of the neutronic behavior and properties of silicon carbide (SiC)-fuel and FeCrAl cladding systems, which provide a better safety margin as accident-tolerant fuel systems for pressurized water reactors. The typical physical behavior of both cladding systems is investigated to determine their general neutronic performance. The multiplication factor, thermal neutron flux spectrum, 239 Pu inventory, pin power distribution, and radial power are analyzed and compared with those of a reference Zr fuel-cladding system. Furthermore, the effects of a burnable poison rod (Gd 2 O 3 ) in different fuel assemblies are investigated. SiC cladding assemblies present a softer neutron spectrum and a lower linear power distribution compared with the conventional Zr-fuel-cladding system. Additionally, the SiC fuel-cladding system exhibits behaviors that are consistent with the neutronic behavior of conventional Zr fuel-cladding systems, thereby affording greater economic and safety improvements.

Suggested Citation

  • Mohammad Alrwashdeh & Saeed A. Alameri, 2022. "SiC and FeCrAl as Potential Cladding Materials for APR-1400 Neutronic Analysis," Energies, MDPI, vol. 15(10), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3772-:d:820214
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3772/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3772/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maithah M. Alaleeli & Saeed A. Alameri & Mohammad Alrwashdeh, 2022. "Neutronic Analysis of SiC/SiC Sandwich Cladding Design in APR-1400 under Normal Operation Conditions," Energies, MDPI, vol. 15(14), pages 1-20, July.
    2. Kyle M. Paaren & Pavel Medvedev & Robert Mariani, 2023. "Optimization of Conductive Fins to Minimize UO 2 Fuel Temperature and Radial Temperature Gradient," Energies, MDPI, vol. 16(6), pages 1-16, March.
    3. Mohammad Alrwashdeh & Saeed A. Alameri, 2022. "Chromium-Coated Zirconium Cladding Neutronics Impact for APR-1400 Reactor Core," Energies, MDPI, vol. 15(21), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3772-:d:820214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.