IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3575-d814893.html
   My bibliography  Save this article

Evaluation of Hierarchical, Multi-Agent, Community-Based, Local Energy Markets Based on Key Performance Indicators

Author

Listed:
  • Godwin C. Okwuibe

    (School of Engineering and Design, Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany
    OLI Systems GmbH, Speyerer Strasse 90, 67376 Harthausen, Germany)

  • Amin Shokri Gazafroudi

    (OLI Systems GmbH, Speyerer Strasse 90, 67376 Harthausen, Germany)

  • Sarah Hambridge

    (Grid Singularity, Am Weinhang 9, 10965 Berlin, Germany
    Grid Singularity, Unipessoal, Lda., Av. José Gomes Ferreira, 11-63 (Edificio Atlas II), Algés, 1495-39 Lisbon, Portugal)

  • Christopher Dietrich

    (Grid Singularity, Am Weinhang 9, 10965 Berlin, Germany
    Grid Singularity, Unipessoal, Lda., Av. José Gomes Ferreira, 11-63 (Edificio Atlas II), Algés, 1495-39 Lisbon, Portugal)

  • Ana Trbovich

    (Grid Singularity, Am Weinhang 9, 10965 Berlin, Germany
    Grid Singularity, Unipessoal, Lda., Av. José Gomes Ferreira, 11-63 (Edificio Atlas II), Algés, 1495-39 Lisbon, Portugal)

  • Miadreza Shafie-khah

    (School of Technology and Innovations, University of Vaasa, 65200 Vaasa, Finland)

  • Peter Tzscheutschler

    (School of Engineering and Design, Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany)

  • Thomas Hamacher

    (School of Engineering and Design, Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany)

Abstract

In recent years, local energy markets (LEMs) have been introduced to empower end-customers within energy communities at the distribution level of the power system, in order to be able to trade their energy locally in a competitive and fair environment. However, there is still some challenge with regard to the most efficient approach in organising the LEMs for the electricity exchange between consumers and prosumers while ensuring that they are responsible for their electricity-related choices, and concerning which LEM model is suitable for which prosumer or consumer type. This paper presents a hierarchical model for the organisation of agent-based local energy markets. According to the proposed model, prosumers and consumers are enabled to transact electricity within the local energy community and with the grid in a coordinated manner to ensure technical and economic benefits for the LEM’s agents. The model is implemented in a software tool called Grid Singularity Exchange (GSyE) , and it is verified in a real German energy community case study. The simulation results demonstrate that trading electricity within the LEM offers economic and technical benefits compared to transacting with the up-stream grid. This can further lead to the decarbonization of the power system sector. Furthermore, we propose two models for LEMs consisting of multi-layer and single-layer hierarchical agent-based structures. According to our study, the multi-layer hierarchical model is more profitable for household prosumers as compared to trading within the single-layer hierarchical LEM. However, the single-layer LEM is more be beneficial for industrial prosumers.

Suggested Citation

  • Godwin C. Okwuibe & Amin Shokri Gazafroudi & Sarah Hambridge & Christopher Dietrich & Ana Trbovich & Miadreza Shafie-khah & Peter Tzscheutschler & Thomas Hamacher, 2022. "Evaluation of Hierarchical, Multi-Agent, Community-Based, Local Energy Markets Based on Key Performance Indicators," Energies, MDPI, vol. 15(10), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3575-:d:814893
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3575/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3575/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gazafroudi, Amin Shokri & Khorasany, Mohsen & Razzaghi, Reza & Laaksonen, Hannu & Shafie-khah, Miadreza, 2021. "Hierarchical approach for coordinating energy and flexibility trading in local energy markets," Applied Energy, Elsevier, vol. 302(C).
    2. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Thomas Morstyn & Niall Farrell & Sarah J. Darby & Malcolm D. McCulloch, 2018. "Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants," Nature Energy, Nature, vol. 3(2), pages 94-101, February.
    4. Zhou, Yue & Wu, Jianzhong & Long, Chao, 2018. "Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework," Applied Energy, Elsevier, vol. 222(C), pages 993-1022.
    5. Amin Shokri Gazafroudi & Javier Prieto & Juan Manuel Corchado, 2019. "Virtual Organization Structure for Agent-Based Local Electricity Trading," Energies, MDPI, vol. 12(8), pages 1-11, April.
    6. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zachary Michael Isaac Gould & Vikram Mohanty & Georg Reichard & Walid Saad & Tripp Shealy & Susan Day, 2023. "A Mycorrhizal Model for Transactive Solar Energy Markets with Battery Storage," Energies, MDPI, vol. 16(10), pages 1-19, May.
    2. Wolfram Rozas & Rafael Pastor-Vargas & Angel Miguel García-Vico & José Carpio, 2023. "Consumption–Production Profile Categorization in Energy Communities," Energies, MDPI, vol. 16(19), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
    3. Arnob Das & Susmita Datta Peu & Md. Abdul Mannan Akanda & Abu Reza Md. Towfiqul Islam, 2023. "Peer-to-Peer Energy Trading Pricing Mechanisms: Towards a Comprehensive Analysis of Energy and Network Service Pricing (NSP) Mechanisms to Get Sustainable Enviro-Economical Energy Sector," Energies, MDPI, vol. 16(5), pages 1-27, February.
    4. Kobashi, Takuro & Yoshida, Takahiro & Yamagata, Yoshiki & Naito, Katsuhiko & Pfenninger, Stefan & Say, Kelvin & Takeda, Yasuhiro & Ahl, Amanda & Yarime, Masaru & Hara, Keishiro, 2020. "On the potential of “Photovoltaics + Electric vehicles” for deep decarbonization of Kyoto’s power systems: Techno-economic-social considerations," Applied Energy, Elsevier, vol. 275(C).
    5. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    6. Min-Hwi Kim & Dong-Won Lee & Deuk-Won Kim & Young-Sub An & Jae-Ho Yun, 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community," Energies, MDPI, vol. 14(17), pages 1-17, September.
    7. Ma, Li & Wang, Lingfeng & Liu, Zhaoxi, 2021. "Multi-level trading community formation and hybrid trading network construction in local energy market," Applied Energy, Elsevier, vol. 285(C).
    8. Wang, Zibo & Yu, Xiaodan & Mu, Yunfei & Jia, Hongjie, 2020. "A distributed Peer-to-Peer energy transaction method for diversified prosumers in Urban Community Microgrid System," Applied Energy, Elsevier, vol. 260(C).
    9. Yuki Matsuda & Yuto Yamazaki & Hiromu Oki & Yasuhiro Takeda & Daishi Sagawa & Kenji Tanaka, 2021. "Demonstration of Blockchain Based Peer to Peer Energy Trading System with Real-Life Used PHEV and HEMS Charge Control," Energies, MDPI, vol. 14(22), pages 1-12, November.
    10. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).
    11. Milad Afzalan & Farrokh Jazizadeh, 2021. "Quantification of Demand-Supply Balancing Capacity among Prosumers and Consumers: Community Self-Sufficiency Assessment for Energy Trading," Energies, MDPI, vol. 14(14), pages 1-21, July.
    12. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    13. Zhang, Bidan & Du, Yang & Chen, Xiaoyang & Lim, Eng Gee & Jiang, Lin & Yan, Ke, 2022. "A novel adaptive penalty mechanism for Peer-to-Peer energy trading," Applied Energy, Elsevier, vol. 327(C).
    14. Dynge, Marthe Fogstad & Berg, Kjersti & Bjarghov, Sigurd & Cali, Ümit, 2023. "Local electricity market pricing mechanisms’ impact on welfare distribution, privacy and transparency," Applied Energy, Elsevier, vol. 341(C).
    15. Faisal Yusuf & Riri Fitri Sari & Purnomo Yusgiantoro & Tri Edhi Budhi Soesilo, 2024. "Stakeholders’ Perceptions of the Peer-to-Peer Energy Trading Model Using Blockchain Technology in Indonesia," Energies, MDPI, vol. 17(19), pages 1-23, October.
    16. Zhou, Yue & Wu, Jianzhong & Song, Guanyu & Long, Chao, 2020. "Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community," Applied Energy, Elsevier, vol. 278(C).
    17. Qiu, Dawei & Ye, Yujian & Papadaskalopoulos, Dimitrios & Strbac, Goran, 2021. "Scalable coordinated management of peer-to-peer energy trading: A multi-cluster deep reinforcement learning approach," Applied Energy, Elsevier, vol. 292(C).
    18. Javier Parra-Domínguez & Esteban Sánchez & Ángel Ordóñez, 2023. "The Prosumer: A Systematic Review of the New Paradigm in Energy and Sustainable Development," Sustainability, MDPI, vol. 15(13), pages 1-44, July.
    19. Zhang, Wen-Yi & Chen, Yue & Wang, Yi & Xu, Yunjian, 2023. "Equilibrium analysis of a peer-to-peer energy trading market with shared energy storage in a power transmission grid," Energy, Elsevier, vol. 274(C).
    20. Khorasany, Mohsen & Shokri Gazafroudi, Amin & Razzaghi, Reza & Morstyn, Thomas & Shafie-khah, Miadreza, 2022. "A framework for participation of prosumers in peer-to-peer energy trading and flexibility markets," Applied Energy, Elsevier, vol. 314(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3575-:d:814893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.