IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3528-d813545.html
   My bibliography  Save this article

The Impact of Conventional Power Block Startup Procedures on the Fatigue Behavior of Drum Materials

Author

Listed:
  • Jerzy Okrajni

    (Faculty of Materials Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Krzysztof Wacławiak

    (Faculty of Materials Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Mariusz Twardawa

    (RAFAKO S.A., 47-100 Racibórz, Poland)

  • Grzegorz Junak

    (Faculty of Materials Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

Abstract

Varying demands for electricity within the energy sector require the modification of operating modes to ensure both an uninterrupted electricity supply and the upholding of safety standards. This paper presents a method for the prediction of drum fatigue life, via the local analysis of stress–strain fields and low-cycle fatigue tests of the drum material. The analysis compares the fatigue properties of an unused material and a material that has undergone many years of operation. In addition, this paper suggests drum operating conditions based on the results of load testing under industrial conditions. The drum model was developed on the basis of technical documentation. The analysis includes the calculations of time-dependent temperature distributions, stresses, and strains for various drum startup modes. The drum material fatigue properties are determined under low-cycle conditions. Using the modeling results and fatigue properties, predictions of drum life for different startup modes are presented. The paper summarizes the impact of a range of startup procedures and the drum material fatigue properties on the fatigue life of a working drum, under various mechanical and thermal loads. In addition, this paper proposes a methodological approach to fatigue life assessment, as a combination of multiple research methods.

Suggested Citation

  • Jerzy Okrajni & Krzysztof Wacławiak & Mariusz Twardawa & Grzegorz Junak, 2022. "The Impact of Conventional Power Block Startup Procedures on the Fatigue Behavior of Drum Materials," Energies, MDPI, vol. 15(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3528-:d:813545
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3528/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3528/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrzej Rusin & Martyna Tomala & Henryk Łukowicz & Grzegorz Nowak & Wojciech Kosman, 2021. "On-Line Control of Stresses in the Power Unit Pressure Elements Taking Account of Variable Heat Transfer Conditions," Energies, MDPI, vol. 14(15), pages 1-21, August.
    2. Magdalena Jaremkiewicz & Jan Taler, 2020. "Online Determining Heat Transfer Coefficient for Monitoring Transient Thermal Stresses," Energies, MDPI, vol. 13(3), pages 1-13, February.
    3. Jerzy Okrajni & Mariusz Twardawa & Krzysztof Wacławiak, 2021. "Impact of Heat Transfer on Transient Stress Fields in Power Plant Boiler Components," Energies, MDPI, vol. 14(4), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hedrick, Katherine & Omell, Benjamin & Zitney, Stephen E. & Bhattacharyya, Debangsu, 2024. "Development of a health monitoring framework: Application to a supercritical pulverized coal-fired boiler," Energy, Elsevier, vol. 290(C).
    2. Jerzy Okrajni & Krzysztof Wacławiak, 2023. "Heat Transfer in the Components of Power Boilers and Related Technological and Endurance Problems," Energies, MDPI, vol. 16(12), pages 1-4, June.
    3. Martyna Tomala & Andrzej Rusin, 2022. "Risk-Based Operation and Maintenance Planning of Steam Turbine with the Long In-Service Time," Energies, MDPI, vol. 15(14), pages 1-17, July.
    4. Jerzy Okrajni & Mariusz Twardawa & Krzysztof Wacławiak, 2021. "Impact of Heat Transfer on Transient Stress Fields in Power Plant Boiler Components," Energies, MDPI, vol. 14(4), pages 1-19, February.
    5. Fernanda Mitchelly Vilas Boas & Luiz Eduardo Borges-da-Silva & Helcio Francisco Villa-Nova & Erik Leandro Bonaldi & Levy Ely Lacerda Oliveira & Germano Lambert-Torres & Frederico de Oliveira Assuncao , 2021. "Condition Monitoring of Internal Combustion Engines in Thermal Power Plants Based on Control Charts and Adapted Nelson Rules," Energies, MDPI, vol. 14(16), pages 1-17, August.
    6. Magda Joachimiak, 2021. "Analysis of Thermodynamic Parameter Variability in a Chamber of a Furnace for Thermo-Chemical Treatment," Energies, MDPI, vol. 14(10), pages 1-18, May.
    7. Joachimiak, Damian & Joachimiak, Magda & Frąckowiak, Andrzej, 2024. "Determination of boundary conditions from the solution of the inverse heat conduction problem in the gas nitriding process," Energy, Elsevier, vol. 300(C).
    8. Taler, Dawid & Dzierwa, Piotr & Kaczmarski, Karol & Taler, Jan, 2022. "Increase the flexibility of steam boilers by optimisation of critical pressure component heating," Energy, Elsevier, vol. 250(C).
    9. Taler, Dawid & Dzierwa, Piotr & Kaczmarski, Karol & Taler, Jan, 2021. "Optimisation of heating and cooling of pressure thick-walled components operating in the saturated steam area," Energy, Elsevier, vol. 231(C).
    10. Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3528-:d:813545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.