IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p2-d707232.html
   My bibliography  Save this article

Investments in Croatian RES Plants and Energy Efficient Building Retrofits: Substitutes or Complements?

Author

Listed:
  • Davor Mikulić

    (Department for Macroeconomics and International Economics, The Institute of Economics, Trg J. F. Kennedyja 7, 10000 Zagreb, Croatia)

  • Damira Keček

    (University Center Varaždin, University North, 104. Brigade 1, 42000 Varazdin, Croatia)

Abstract

Croatian energy strategy defines ambitious goals aimed at achieving energy transition toward a sustainable low-carbon society. Achieving those goals requires significant investments in the renewable energy sources and improved energy efficiency of buildings. The purpose of this paper is to estimate and compare the economic effects of the energy transition on the renewable energy supply and demand side. The estimation of the energy transition effects in Croatia in the period 2020–2050 is based on the input-output model, which identifies direct, indirect and induced effects of investments in renewable energy sources and energy efficient buildings renovation. Results of the study reveal relatively higher gross value added and employment effects induced by investments in building retrofits, but the effects of investments in renewable energy are also significant. Investments in sustainable, efficient and environmentally effective energy system could significantly contribute to Croatian GDP. While GVA effects range from 0.4% to 0.6% of annual GDP, the share of full-time equivalent jobs induced by energy transition could reach 0.5% to 1% of total employment in Croatia. Investments in RES plants and energy efficient building reconstruction are not substitutes but complements which ensure a smooth energy transition if undertaken together.

Suggested Citation

  • Davor Mikulić & Damira Keček, 2021. "Investments in Croatian RES Plants and Energy Efficient Building Retrofits: Substitutes or Complements?," Energies, MDPI, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:2-:d:707232
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/2/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/2/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cameron, Lachlan & van der Zwaan, Bob, 2015. "Employment factors for wind and solar energy technologies: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 160-172.
    2. Lisa Ryan & Nina Campbell, 2012. "Spreading the Net: The Multiple Benefits of Energy Efficiency Improvements," IEA Energy Papers 2012/8, OECD Publishing.
    3. Sovacool, Benjamin K. & Martiskainen, Mari & Hook, Andrew & Baker, Lucy, 2020. "Beyond cost and carbon: The multidimensional co-benefits of low carbon transitions in Europe," Ecological Economics, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michaela Makešová & Michaela Valentová, 2021. "The Concept of Multiple Impacts of Renewable Energy Sources: A Critical Review," Energies, MDPI, vol. 14(11), pages 1-21, May.
    2. Hirt, Léon F. & Sahakian, Marlyne & Trutnevyte, Evelina, 2022. "What subnational imaginaries for solar PV? The case of the Swiss energy transition," Technology in Society, Elsevier, vol. 71(C).
    3. Luigi Aldieri & Jonas Grafström & Kristoffer Sundström & Concetto Paolo Vinci, 2019. "Wind Power and Job Creation," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    4. Bohlmann, H.R. & Horridge, J.M. & Inglesi-Lotz, R. & Roos, E.L. & Stander, L., 2019. "Regional employment and economic growth effects of South Africa’s transition to low-carbon energy supply mix," Energy Policy, Elsevier, vol. 128(C), pages 830-837.
    5. Lidija MADZAR, 2019. "Energy Intensity Of The Household Sector In The Republic Of Serbia," Contemporary Economy Journal, Constantin Brancoveanu University, vol. 4(1), pages 25-37.
    6. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    7. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    8. Duscha, Vicki & Fougeyrollas, Arnaud & Nathani, Carsten & Pfaff, Matthias & Ragwitz, Mario & Resch, Gustav & Schade, Wolfgang & Breitschopf, Barbara & Walz, Rainer, 2016. "Renewable energy deployment in Europe up to 2030 and the aim of a triple dividend," Energy Policy, Elsevier, vol. 95(C), pages 314-323.
    9. Jayaraj, Nikhil & Klarin, Anton & Ananthram, Subramaniam, 2024. "The transition towards solar energy storage: a multi-level perspective," Energy Policy, Elsevier, vol. 192(C).
    10. Petrov, Ivan & Ryan, Lisa, 2021. "The landlord-tenant problem and energy efficiency in the residential rental market," Energy Policy, Elsevier, vol. 157(C).
    11. Lema, Rasmus & Bhamidipati, Padmasai Lakshmi & Gregersen, Cecilia & Hansen, Ulrich Elmer & Kirchherr, Julian, 2021. "China’s investments in renewable energy in Africa: Creating co-benefits or just cashing-in?," World Development, Elsevier, vol. 141(C).
    12. Arvanitopoulos, T. & Agnolucci, P., 2020. "The long-term effect of renewable electricity on employment in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Cho, Seong-Hoon & Kim, Taeyoung & Kim, Hyun Jae & Park, Kihyun & Roberts, Roland K., 2015. "Regionally-varying and regionally-uniform electricity pricing policies compared across four usage categories," Energy Economics, Elsevier, vol. 49(C), pages 182-191.
    14. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    15. Figus, Gioele & Turner, Karen & McGregor, Peter & Katris, Antonios, 2017. "Making the case for supporting broad energy efficiency programmes: Impacts on household incomes and other economic benefits," Energy Policy, Elsevier, vol. 111(C), pages 157-165.
    16. Ramos, Carmen & García, Ana Salomé & Moreno, Blanca & Díaz, Guzmán, 2019. "Small-scale renewable power technologies are an alternative to reach a sustainable economic growth: Evidence from Spain," Energy, Elsevier, vol. 167(C), pages 13-25.
    17. Coyne, Bryan & Denny, Eleanor, 2021. "Retrofit effectiveness: Evidence from a nationwide residential energy efficiency programme," Energy Policy, Elsevier, vol. 159(C).
    18. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Socio-techno-economic design of hybrid renewable energy system using optimization techniques," Renewable Energy, Elsevier, vol. 119(C), pages 459-472.
    19. Elkadeem, Mohamed R. & Kotb, Kotb M. & Abido, Mohamed A. & Hasanien, Hany M. & Atiya, Eman G. & Almakhles, Dhafer & Elmorshedy, Mahmoud F., 2024. "Techno-enviro-socio-economic design and finite set model predictive current control of a grid-connected large-scale hybrid solar/wind energy system: A case study of Sokhna Industrial Zone, Egypt," Energy, Elsevier, vol. 289(C).
    20. Luigi Aldieri & Jonas Grafström & Concetto Paolo Vinci, 2021. "The Effect of Marshallian and Jacobian Knowledge Spillovers on Jobs in the Solar, Wind and Energy Efficiency Sector," Energies, MDPI, vol. 14(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:2-:d:707232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.