IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p129-d710860.html
   My bibliography  Save this article

Dynamic Modelling and Advanced Process Control of Power Block for a Parabolic Trough Solar Power Plant

Author

Listed:
  • Wisam Abed Kattea Al-Maliki

    (TU Darmstadt, Institut Energiesysteme und Energietechnik, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany
    Mechanical Engineering Department, University of Technology-Iraq, Baghdad 19006, Iraq)

  • Auday Shaker Hadi

    (Mechanical Engineering Department, University of Technology-Iraq, Baghdad 19006, Iraq)

  • Hussein M. H. Al-Khafaji

    (Mechanical Engineering Department, University of Technology-Iraq, Baghdad 19006, Iraq)

  • Falah Alobaid

    (TU Darmstadt, Institut Energiesysteme und Energietechnik, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany)

  • Bernd Epple

    (TU Darmstadt, Institut Energiesysteme und Energietechnik, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany)

Abstract

A fundamental task in the dynamic simulation of parabolic trough power plants (PTPP) is to understand the behavior of the system physics and control loops in the presence of weather variations. This study provides a detailed description of the advanced controllers used in the power block (PB) of a 50 MW el parabolic trough power plant (PTPP). The PB model is achieved using APROS software based on the actual specifications of the existing power plant. To verify the behaviour of the PB model, a comparison between the simulated results and given real data is documented depending on a previous study, and the results indicate a reasonable degree of correspondence. The purpose of this study is to create reference models for the PB. Thereby, developers and engineers will have a better understanding of the state of the art of advanced control loops in these power plants. Moreover, these types of models can be used to specify the most suitable mode of operation for the power plant. In addition, this study gives an overview of dynamic simulation for the design, optimisation and development of power blocks in parabolic trough power plants.

Suggested Citation

  • Wisam Abed Kattea Al-Maliki & Auday Shaker Hadi & Hussein M. H. Al-Khafaji & Falah Alobaid & Bernd Epple, 2021. "Dynamic Modelling and Advanced Process Control of Power Block for a Parabolic Trough Solar Power Plant," Energies, MDPI, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:129-:d:710860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/129/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaygusuz, Kamil, 2011. "Prospect of concentrating solar power in Turkey: The sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 808-814, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keleş, S. & Bilgen, S., 2012. "Renewable energy sources in Turkey for climate change mitigation and energy sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5199-5206.
    2. Martín, Helena & de la Hoz, Jordi & Velasco, Guillermo & Castilla, Miguel & García de Vicuña, José Luís, 2015. "Promotion of concentrating solar thermal power (CSP) in Spain: Performance analysis of the period 1998–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1052-1068.
    3. Toklu, E., 2013. "Overview of potential and utilization of renewable energy sources in Turkey," Renewable Energy, Elsevier, vol. 50(C), pages 456-463.
    4. Kaygusuz, Kamil, 2012. "Energy for sustainable development: A case of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1116-1126.
    5. Ramachandra, T.V. & Jain, Rishabh & Krishnadas, Gautham, 2011. "Hotspots of solar potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3178-3186, August.
    6. Kousksou, T. & Allouhi, A. & Belattar, M. & Jamil, A. & El Rhafiki, T. & Arid, A. & Zeraouli, Y., 2015. "Renewable energy potential and national policy directions for sustainable development in Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 46-57.
    7. Sharma, Chandan & Sharma, Ashish K. & Mullick, Subhash C. & Kandpal, Tara C., 2015. "Assessment of solar thermal power generation potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 902-912.
    8. Seyithan Ahmet Ate, 2013. "A Novel Approach to Development of Renewable Heating Support Policies in Turkey," International Journal of Energy Economics and Policy, Econjournals, vol. 3(Special), pages 115-126.
    9. Boukelia, Taqiy eddine & Mecibah, Mohamed-Salah, 2013. "Parabolic trough solar thermal power plant: Potential, and projects development in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 288-297.
    10. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    11. Khamlich, Imane & Zeng, Kuo & Flamant, Gilles & Baeyens, Jan & Zou, Chongzhe & Li, Jun & Yang, Xinyi & He, Xiao & Liu, Qingchuan & Yang, Haiping & Yang, Qing & Chen, Hanping, 2021. "Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    12. Islam, Md Tasbirul & Huda, Nazmul & Saidur, R., 2019. "Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia," Renewable Energy, Elsevier, vol. 140(C), pages 789-806.
    13. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    14. Kotcioğlu, İ., 2011. "Clean and sustainable energy policies in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5111-5119.
    15. Pavlović, Tomislav M. & Radonjić, Ivana S. & Milosavljević, Dragana D. & Pantić, Lana S., 2012. "A review of concentrating solar power plants in the world and their potential use in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3891-3902.
    16. Monaem Elmnifi & Moneer Amhamed & Naji Abdelwanis & Otman Imrayed, 2018. "Solar Supported Steam Production For Power Generation In Libya," Acta Mechanica Malaysia (AMM), Zibeline International Publishing, vol. 1(2), pages 5-9, February.
    17. Gul Kaplan, Ayse & Alper Kaplan, Yusuf, 2020. "Developing of the new models in solar radiation estimation with curve fitting based on moving least-squares approximation," Renewable Energy, Elsevier, vol. 146(C), pages 2462-2471.
    18. Melikoglu, Mehmet, 2016. "The role of renewables and nuclear energy in Turkey׳s Vision 2023 energy targets: Economic and technical scrutiny," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1-12.
    19. Balghouthi, Moncef & Trabelsi, Seif Eddine & Amara, Mahmoud Ben & Ali, Abdessalem Bel Hadj & Guizani, Amenallah, 2016. "Potential of concentrating solar power (CSP) technology in Tunisia and the possibility of interconnection with Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1227-1248.
    20. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:129-:d:710860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.