IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2549-d545920.html
   My bibliography  Save this article

Linear Induction Motors in Transportation Systems

Author

Listed:
  • Ryszard Palka

    (Faculty of Electrical Engineering, West Pomeranian University of Technology, Sikorskiego 37, 70-313 Szczecin, Poland)

  • Konrad Woronowicz

    (Faculty of Electrical Engineering, West Pomeranian University of Technology, Sikorskiego 37, 70-313 Szczecin, Poland)

Abstract

This paper provides an overview of the Linear Transportation System (LTS) and focuses on the application of a Linear Induction Motor (LIM) as a major constituent of LTS propulsion. Due to their physical characteristics, linear induction motors introduce many physical phenomena and design constraints that do not occur in the application of the rotary motor equivalent. The efficiency of the LIM is lower than that of the equivalent rotary machine, but, when the motors are compared as integrated constituents of the broader transportation system, the rotary motor’s efficiency advantage diminishes entirely. Against this background, several solutions to the problems still existing in the application of traction linear induction motors are presented based on the scientific research of the authors. Thus, solutions to the following problems are presented here: (a) development of new analytical solutions and finite element methods for LIM evaluation; (b) comparison between the analytical and numerical results, performed with commercial and self-developed software, showing an exceptionally good agreement; (c) self-developed LIM adaptive control methods; (d) LIM performance under voltage supply (non-symmetrical phase current values); (e) method for the power loss evaluation in the LIM reaction rail and the temperature rise prediction method of a traction LIM; and (f) discussion of the performance of the superconducting LIM. The addressed research topics have been chosen for their practical impact on the advancement of a LIM as the preferred urban transport propulsion motor.

Suggested Citation

  • Ryszard Palka & Konrad Woronowicz, 2021. "Linear Induction Motors in Transportation Systems," Energies, MDPI, vol. 14(9), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2549-:d:545920
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2549/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2549/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bin Liu & Rod Badcock & Hang Shu & Jin Fang, 2018. "A Superconducting Induction Motor with a High Temperature Superconducting Armature: Electromagnetic Theory, Design and Analysis," Energies, MDPI, vol. 11(4), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryszard Palka, 2022. "The Performance of Induction Machines," Energies, MDPI, vol. 15(9), pages 1-4, April.
    2. Francisco Ferreira da Silva & João F. P. Fernandes & Paulo José da Costa Branco, 2022. "Superconducting Electric Power Systems: R&D Advancements," Energies, MDPI, vol. 15(19), pages 1-10, October.
    3. Marek Michalczuk & Marcin Nikoniuk & Paweł Radziszewski, 2021. "Multi-Inverter Linear Motor Based Vehicle Propulsion System for a Small Cargo Transportation," Energies, MDPI, vol. 14(15), pages 1-16, July.
    4. Nikita Gobichettipalayam Boopathi & Manoj Shrivatsaan Muthuraman & Ryszad Palka & Marcin Wardach & Pawel Prajzendanc & Edison Gundabattini & Raja Singh Rassiah & Darius Gnanaraj Solomon, 2022. "Modeling and Simulation of Electric Motors Using Lightweight Materials," Energies, MDPI, vol. 15(14), pages 1-17, July.
    5. Victor Goman & Vladimir Prakht & Vladimir Dmitrievskii & Fedor Sarapulov, 2021. "Analysis of Coupled Thermal and Electromagnetic Processes in Linear Induction Motors Based on a Three-Dimensional Thermal Model," Mathematics, MDPI, vol. 10(1), pages 1-20, December.
    6. Krzysztof Tomczyk & Piotr Beńko, 2022. "Analysis of the Upper Bound of Dynamic Error Obtained during Temperature Measurements," Energies, MDPI, vol. 15(19), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Huang & Qunzhang Tu & Ming Pan & Chenming Jiang & Jinhong Xue, 2020. "Fast Terminal Sliding Mode Control of Permanent Magnet In-Wheel Motor Based on a Fuzzy Controller," Energies, MDPI, vol. 13(1), pages 1-17, January.
    2. Kang Wang & Ruituo Huai & Zhihao Yu & Xiaoyang Zhang & Fengjuan Li & Luwei Zhang, 2019. "Comparison Study of Induction Motor Models Considering Iron Loss for Electric Drives," Energies, MDPI, vol. 12(3), pages 1-13, February.
    3. Fabrizio Marignetti & Guido Rubino, 2023. "Perspectives on Electric Machines with Cryogenic Cooling," Energies, MDPI, vol. 16(7), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2549-:d:545920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.