IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2276-d538586.html
   My bibliography  Save this article

CFD-DEM Simulation of Spouted Bed Dynamics under High Temperature with an Adhesive Model

Author

Listed:
  • Zhao Chen

    (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)

  • Lin Jiang

    (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)

  • Mofan Qiu

    (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)

  • Meng Chen

    (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)

  • Rongzheng Liu

    (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)

  • Malin Liu

    (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)

Abstract

Particle adhesion is of great importance to coating processes due to its effect on fluidization. Currently, Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) has become a powerful tool for the study of multiphase flows. Various contact force models have also been proposed. However, particle dynamics in high temperature will be changed with particle surface properties changing. In view of this, an adhesion model is developed based on approaching-loading-unloading-detaching idea and particle surface change under high temperature in this paper. Analyses of the adhesion model are given through two particle collision process and validated by experiment. Effects of inlet gas velocity and adhesion intensity on spouted bed dynamics are investigated. It is concluded that fluidization cycle will be accelerated by adhesion, and intensity of fluidization will be marginally enhanced by slight adhesion. Within a certain range, increasing inlet gas velocity will lead to strong intensity of particle motion. A parameter sensitivity comparison of linear spring-damping model and Hertz-Mindlin Model is given, which shows in case of small overlaps, forces calculated by both models have little distinction, diametrically opposed to that of large overlaps.

Suggested Citation

  • Zhao Chen & Lin Jiang & Mofan Qiu & Meng Chen & Rongzheng Liu & Malin Liu, 2021. "CFD-DEM Simulation of Spouted Bed Dynamics under High Temperature with an Adhesive Model," Energies, MDPI, vol. 14(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2276-:d:538586
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2276/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2276/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao Chen & Xiaoke Ku & Jianzhong Lin & Henrik Ström, 2020. "CFD-DEM Simulation of Biomass Pyrolysis in Fluidized-Bed Reactor with a Multistep Kinetic Scheme," Energies, MDPI, vol. 13(20), pages 1-19, October.
    2. Abdul Salam, P. & Bhattacharya, S.C., 2006. "A comparative study of charcoal gasification in two types of spouted bed reactors," Energy, Elsevier, vol. 31(2), pages 228-243.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. La Villetta, M. & Costa, M. & Massarotti, N., 2017. "Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 71-88.
    2. Ram, Narasimhan Kodanda & Singh, Nameirakpam Rajesh & Raman, Perumal & Kumar, Atul & Kaushal, Priyanka, 2019. "A detailed experimental analysis of air–steam gasification in a dual fired downdraft biomass gasifier enabling hydrogen enrichment in the producer gas," Energy, Elsevier, vol. 187(C).
    3. Tianbao Gu & Torsten Berning & Chungen Yin, 2021. "Application of a New Statistical Model for the Description of Solid Fuel Decomposition in the Analysis of Artemisia apiacea Pyrolysis," Energies, MDPI, vol. 14(18), pages 1-12, September.
    4. Thoharudin, & Hsiau, Shu-San & Chen, Yi-Shun & Yang, Shouyin, 2023. "Design optimization of fluidized bed pyrolysis for energy and exergy analysis using a simplified comprehensive multistep kinetic model," Energy, Elsevier, vol. 276(C).
    5. Raman, P. & Ram, N.K., 2013. "Performance analysis of an internal combustion engine operated on producer gas, in comparison with the performance of the natural gas and diesel engines," Energy, Elsevier, vol. 63(C), pages 317-333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2276-:d:538586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.