IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2260-d538089.html
   My bibliography  Save this article

The Effect of Chromium on Photosynthesis and Lipid Accumulation in Two Chlorophyte Microalgae

Author

Listed:
  • Khawaja Muhammad Imran Bashir

    (German Engineering Research and Development Center, LSTME-Busan, Busan 46742, Korea)

  • Hyeon-Jun Lee

    (Department of Chemical and Biological Engineering, Institute of Fluid Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg Busan Campus, Busan 46742, Korea)

  • Sana Mansoor

    (Department of Environmental Engineering, College of Engineering, Dong-A University, Busan 49315, Korea)

  • Alexander Jahn

    (German Engineering Research and Development Center, LSTME-Busan, Busan 46742, Korea)

  • Man-Gi Cho

    (Department of Biotechnology, Division of Energy and Bioengineering, Dongseo University, Busan 47011, Korea)

Abstract

Heavy metals have adverse effects on microalgae metabolism and growth. Photosynthesis and lipid profile are quite sensitive to heavy metal toxicity. The impact of hexavalent chromium—Cr(VI) on photosynthesis and lipid accumulation in Mucidosphaerium pulchellum and Micractinium pusillum exposed to different concentrations (0–500 μg L −1 ) was investigated for 11 days. A significant ( p < 0.05) increase in lipid content was observed with increasing Cr(VI) concentration. However, growth was suppressed at higher concentrations exceeding 100 μg L −1 . Addition of Cr(VI) in the cell culture medium showed a negative effect on quantum yield ( F v /F m ), and a photosynthetic inhibition of >65% was noted in both species at 500 μg L −1 . However, the lipid gravimetric analysis presented inner cell lipid content up to 36% and 30% of dry weight biomass for M. pulchellum and M. pusillum, respectively. The fatty acids profiles of both microalgae species showed higher levels of hexadecenoic acid as well as ω3, ω6, and ω7 fatty acids. The effect of Cr(VI) on photosynthesis and lipid accumulation in both microalgae species was concentration and exposure time dependent. This shows that an appropriate concentration of Cr(VI) in culture medium could be beneficial for higher lipid accumulation in freshwater eukaryotic microalgae species.

Suggested Citation

  • Khawaja Muhammad Imran Bashir & Hyeon-Jun Lee & Sana Mansoor & Alexander Jahn & Man-Gi Cho, 2021. "The Effect of Chromium on Photosynthesis and Lipid Accumulation in Two Chlorophyte Microalgae," Energies, MDPI, vol. 14(8), pages 1-11, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2260-:d:538089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2260/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2260/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Małgorzata Hawrot-Paw & Adam Koniuszy & Małgorzata Gałczyńska, 2020. "Sustainable Production of Monoraphidium Microalgae Biomass as a Source of Bioenergy," Energies, MDPI, vol. 13(22), pages 1-13, November.
    2. Mei An & Li Gao & Wen Zhao & Weiguang Chen & Ming Li, 2020. "Effects of Nitrogen Forms and Supply Mode on Lipid Production of Microalga Scenedesmus obliquus," Energies, MDPI, vol. 13(3), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph Christian Utomo & Young Mo Kim & Hyun Uk Cho & Jong Moon Park, 2020. "Evaluation of Scenedesmus rubescens for Lipid Production from Swine Wastewater Blended with Municipal Wastewater," Energies, MDPI, vol. 13(18), pages 1-11, September.
    2. Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammed & Thaher, Mahmoud Ibrahim & Hawari, Alaa H. & Alshamri, Noora & AlGhasal, Ghamza & Al-Jabri, Hareb M.J., 2023. "Biocrude oil production from a self-settling marine cyanobacterium, Chroococcidiopsis sp., using a biorefinery approach," Renewable Energy, Elsevier, vol. 203(C), pages 1-9.
    3. Ana F. Esteves & Eva M. Salgado & José C. M. Pires, 2022. "Recent Advances in Microalgal Biorefineries," Energies, MDPI, vol. 15(16), pages 1-4, August.
    4. Eldiehy, Khalifa S.H. & Gohain, Minakshi & Daimary, Niran & Borah, Doljit & Mandal, Manabendra & Deka, Dhanapati, 2022. "Radish (Raphanus sativus L.) leaves: A novel source for a highly efficient heterogeneous base catalyst for biodiesel production using waste soybean cooking oil and Scenedesmus obliquus oil," Renewable Energy, Elsevier, vol. 191(C), pages 888-901.
    5. Zheng, Heshan & Wang, Yu & Li, Shuo & Nagarajan, Dillirani & Varjani, Sunita & Lee, Duu-Jong & Chang, Jo-Shu, 2022. "Recent advances in lutein production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    6. Marcin Dębowski & Izabela Świca & Joanna Kazimierowicz & Marcin Zieliński, 2022. "Large Scale Microalgae Biofuel Technology—Development Perspectives in Light of the Barriers and Limitations," Energies, MDPI, vol. 16(1), pages 1-23, December.
    7. Patryk Ratomski & Małgorzata Hawrot-Paw & Adam Koniuszy, 2021. "Utilisation of CO 2 from Sodium Bicarbonate to Produce Chlorella vulgaris Biomass in Tubular Photobioreactors for Biofuel Purposes," Sustainability, MDPI, vol. 13(16), pages 1-10, August.
    8. Shimaa M. El Shafay & Ahmed Gaber & Walaa F. Alsanie & Mostafa E. Elshobary, 2021. "Influence of Nutrient Manipulation on Growth and Biochemical Constituent in Anabaena variabilis and Nostoc muscorum to Enhance Biodiesel Production," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    9. Alejandro Ortega & Konstantinos Gkoumas & Anastasios Tsakalidis & Ferenc Pekár, 2021. "Low-Emission Alternative Energy for Transport in the EU: State of Play of Research and Innovation," Energies, MDPI, vol. 14(22), pages 1-22, November.
    10. Rahul Prasad Singh & Priya Yadav & Indrajeet Kumar & Manoj Kumar Solanki & Rajib Roychowdhury & Ajay Kumar & Rajan Kumar Gupta, 2023. "Advancement of Abiotic Stresses for Microalgal Lipid Production and Its Bioprospecting into Sustainable Biofuels," Sustainability, MDPI, vol. 15(18), pages 1-36, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2260-:d:538089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.