IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p1869-d525575.html
   My bibliography  Save this article

Numerical Study of Hydrogen Auto-Ignition Process in an Isotropic and Anisotropic Turbulent Field

Author

Listed:
  • Agnieszka Wawrzak

    (Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Armii Krajowej 21, 42-201 Czestochowa, Poland)

  • Artur Tyliszczak

    (Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Armii Krajowej 21, 42-201 Czestochowa, Poland)

Abstract

The physical mechanisms underlying the dynamics of the flame kernel in stationary isotropic and anisotropic turbulent field are studied using large eddy simulations (LES) combined with a pdf approach method for the combustion model closure. Special attention is given to the ignition scenario, ignition delay, size and shape of the flame kernel among different turbulent regimes. Different stages of ignition are analysed for various levels of the initial velocity fluctuations and turbulence length scales. Impact of these parameters is found small for the ignition delay time but turns out to be significant during the flame kernel propagation phase and persists up to the stabilisation stage. In general, it is found that in the isotropic conditions, the flame growth and the rise of the maximum temperature in the domain are more dependent on the initial fluctuations level and the length scales. In the anisotropic regimes, these parameters have a substantial influence on the flame only during the initial phase of its development.

Suggested Citation

  • Agnieszka Wawrzak & Artur Tyliszczak, 2021. "Numerical Study of Hydrogen Auto-Ignition Process in an Isotropic and Anisotropic Turbulent Field," Energies, MDPI, vol. 14(7), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1869-:d:525575
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/1869/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/1869/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lijia Zhong & Changwen Liu, 2019. "Numerical Analysis of End-Gas Autoignition and Pressure Oscillation in a Downsized SI Engine Using Large Eddy Simulation," Energies, MDPI, vol. 12(20), pages 1-20, October.
    2. Lei Zhou & Xiaojun Zhang & Lijia Zhong & Jie Yu, 2020. "Effects of Flame Propagation Velocity and Turbulence Intensity on End-Gas Auto-Ignition in a Spark Ignition Gasoline Engine," Energies, MDPI, vol. 13(19), pages 1-23, September.
    3. Ɓukasz Kuban & Jakub Stempka & Artur Tyliszczak, 2021. "Numerical Analysis of the Combustion Dynamics of Passively Controlled Jets Issuing from Polygonal Nozzles," Energies, MDPI, vol. 14(3), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wawrzak, Agnieszka & Caban, Lena & Tyliszczak, Artur & Mastorakos, Epaminondas, 2024. "Numerical analysis of turbulent nitrogen-diluted hydrogen flames stabilised by star-shaped bluff bodies," Applied Energy, Elsevier, vol. 364(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Gao & Anren Yao & Yeyi Zhang & Guofan Qu & Chunde Yao & Shemin Zhang & Dongsheng Li, 2021. "Investigation into the Relationship between Super-Knock and Misfires in an SI GDI Engine," Energies, MDPI, vol. 14(8), pages 1-18, April.
    2. Lei Zhou & Xiaojun Zhang & Lijia Zhong & Jie Yu, 2020. "Effects of Flame Propagation Velocity and Turbulence Intensity on End-Gas Auto-Ignition in a Spark Ignition Gasoline Engine," Energies, MDPI, vol. 13(19), pages 1-23, September.
    3. Zou, Run & Li, Yuan & Liu, Jinxiang & Wang, Nana & Zeng, Qinghan & Li, Jiong, 2023. "Numerical study on the effects of spark strategies on knocking combustion in a downsized gasoline rotary engine," Energy, Elsevier, vol. 263(PD).
    4. Wawrzak, Agnieszka & Caban, Lena & Tyliszczak, Artur & Mastorakos, Epaminondas, 2024. "Numerical analysis of turbulent nitrogen-diluted hydrogen flames stabilised by star-shaped bluff bodies," Applied Energy, Elsevier, vol. 364(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1869-:d:525575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.